Какие вы знаете витамины антиоксиданты. Витамин Е: естественный антиоксидант. Антиоксидантная способность продуктов

Антиоксиданты (биологические антиокислители) − группа соединений, в которую входят каротиноиды, минералы, витамины.

Данные вещества стоят на страже здоровья клеток. Они нейтрализуют свободные радикалы, препятствуют повреждению мембран, сохраняют силу, красоту человека. Антиоксиданты не только предотвращают нарушение целостности клеток, но и ускоряют восстановление разрушенного, повышают сопротивляемость организма инфекциям. Таким образом, соединения защищают от старения, неблагоприятного воздействия факторов окружающей среды, онкологических, сердечно-сосудистых болезней.

Антиокислители применяют в медицине для изготовления биодобавок, препаратов, в пищевой промышленности, как консервант, для уменьшения порчи продуктов в производстве, для замедления осмоления топлива и стабилизации горючего.

Самые известные антиоксиданты:

  • минералы: , ;
  • витамины: токоферолы и токотриенолы (Е), (С), (А);
  • каротиноиды: зеаксантин, ликопен, бета-каротин, .

Различают следующие виды биологических антиокислителей:

  • натуральные (содержатся в продуктах);
  • синтетические (лекарственные средства, пищевые добавки, ).

Антиоксиданты и свободные радикалы

Свободные радикалы – молекулы, у которых отсутствует один или несколько электронов. Ежедневно каждая клетка внутренних органов подвергается атаке 10 000 дефектных соединений. «Путешествуя» по организму, свободные радикалы отнимают у полноценных молекул искомый электрон, что подрывает здоровье человека. Поврежденные клетки перестают полноценно функционировать, наступает «окислительный стресс».

Причинами появления свободных радикалов в организме человека является прием лекарственных препаратов, радиация, плохая экология, курение, ультрафиолетовое излучение.

Последствия разрушительного воздействия агрессивных окислителей на жизненно важные структуры трагичны.

Под влиянием свободных радикалов развиваются:

  • атеросклероз;
  • болезни сердца, ;
  • варикозное расширение вен;
  • катаракта;
  • артрит;
  • астма;
  • флебит;

Дефектные соединения вызывают воспаление в тканях, клетках мозга, нервной системе, ускоряют старение, нарушают иммунную функцию. Они воздействуют на ДНК, что ведет к изменению наследственной информации.

На сегодняшний день не изобретено средства, препятствующего появлению свободных радикалов в организме. Однако, если бы не антиоксиданты человек болел бы гораздо дольше, тяжелее, чаще.

Биологические антиокислители перехватывают дефектную молекулу, отдавая ей собственный электрон, тем самым оберегая клетки органов и систем от повреждения. При этом, сами антиоксиданты после отсоединения отрицательно заряженной частицы не теряют устойчивость.

Соединения блокируют окислительный процесс, способствуют очищению, обновлению клеток, оказывают омолаживающее действие на кожу.

Антиоксиданты представляют собой экологический десант, который стоит на страже человеческого организма.

Данные антиоксиданты можно получить с продуктами питания, однако из-за сильно загрязненной окружающей среды с каждым годом потребность человека в этих веществах возрастает, в результате восполнить нехватку при помощи природных источников становится тяжелее. В таком случае на помощь приходят витаминизированные добавки, которые оказывают благоприятное воздействие на работу внутренних органов, улучшают общее самочувствие человека.

Роль антиоксидантов:

  1. Витамин Е (токоферол). Встраивается в клеточные мембраны, отражает атаку свободных радикалов, препятствует разрушению, повреждению тканей. Помимо этого, витамин Е замедляет перекисное окисление, стабилизирует внутриклеточные процессы. Токоферол приостанавливает преждевременное старение кожи, предупреждает развитие катаракты, укрепляет иммунитет, улучшает усвоение кислорода.
  2. Витамин А (ретинол). Данный антиоксидант способен частично синтезироваться из бета-каротина, который, в свою очередь, смягчает действия химического и радиоактивного загрязнения, электромагнитного излучения, повышает устойчивость организма к стрессам. Витамин А защищает слизистые оболочки внутренних органов, кожу от вредных факторов окружающей среды, помогает иммунной системе нейтрализовать бактерии и вирусы. Он разрушает канцерогены, которые вызывают рост злокачественных опухолей, снижает уровень , предупреждает болезни сердца, инсульты. При хронической нехватке ретинола усиливается активность свободных радикалов, отмечается , ухудшается зрение.
  3. Витамин С (аскорбиновая кислота). Защищает клетки головного мозга и другие антиоксиданты (токоферол) от свободных радикалов. Витамин С повышает синтез интерферона, нейтрализует токсины, стимулирует работу нервных клеток. Интересно, что одна выкуренная сигарета разрушает 100 миллиграмм аскорбиновой кислоты.

Помните, витамины сами по себе проявляют недостаточную антиоксидантную активность и без комбинированного действия минералов не могут полностью защитить организм от повреждающих факторов (эндогенных и экзогенных).

Значение минералов – антиоксидантов

Макро- и микросоединения усиливают действие витаминов, обладают противоаллергическими, иммуностимулирующими, противоопухолевыми, противовоспалительными, сосудорасширяющими и бактерицидными свойствами.

Природные минералы – антиоксиданты способствуют оздоровлению клеток организма, защищают мембраны от разрушительного избыточного окисления.

Рассмотрим какие органические соединения «оберегают» организм от радикалов-вредителей:

  1. Селен. Это элемент фермента глутатиона-пероксидазы, который поддерживает здоровье сердца, печени, легких, клеток крови. Минерал стимулирует реакцию антител на болезненные раздражители (инфекцию), обеспечивает защиту мембран от повреждений. Селен – блокатор окислительно – восстановительных превращений металлов. Нехватка нутриента может привести к тому, что антиоксиданты начнут поддерживать течение свободнорадикальных процессов в организме.
  2. Цинк. Способствует абсорбции витамина А, репарации ДНК и РНК, поддерживает нормальную концентрацию токоферола в организме, защищает геном человека от свободных радикалов, сохраняя его в целости и сохранности.
  3. Медь. Нормализует клеточный обмен, является компонентом фермента супероксиддисмутазы, которая противостоит агрессивным окислителям. Нехватка меди в организме приводит к снижению сопротивляемости простудным и ОРВИ – инфекциям.
  4. Хром. Участвует в углеводном и жировом обмене. Увеличивает резервные возможности организма, ускоряет преобразование глюкозы в гликоген, повышает выносливость.
  5. Марганец. Антиоксидант участвует в продуцировании супероксиддисмутазы, которая оберегает полиненасыщенные жирные кислоты клеточных мембран от атаки свободных радикалов. Марганец улучшает усвоение токоферола, витаминов С и .

Мощными природными антиоксидантами являются , лекарственные грибы (мейтаке, рейши, кордицепс, веселка, ). Несмотря на обилие данных продуктов в меню человека, люди остаются беззащитны перед разрушающим воздействием свободных радикалов на клетки.

Согласно данным научного исследовательского института гигиены питания, сегодня 50% людей испытывает дефицит витамина А в организме, а 85% – аскорбиновой кислоты, минералов. Виною всему эмоциональное, физическое перенапряжение, в результате которого происходит усиленное сжигание нутриентов, резкое обеднение почв, ухудшение экологии, стрессы, несбалансированное питание.

Антиоксиданты, в форме биологически активных добавок, в полной мере покрывают потребность организма в полезных соединениях, защищают от оксидантов, свободных радикалов, блокируют формирование нитрозаминов, нейтрализуют пагубное влияние свинца на эритроциты, нервную систему, повышают иммунитет, разрушают раковые клетки, увеличивают продолжительность жизни.

Суточная норма

Для нормального функционирования нервной системы и поддержания здоровья внутренних органов рекомендуется ежедневно потреблять витамины и минералы-антиоксиданты в следующей дозировке:

  • цинк – 8 миллиграмм для женщин, 11 миллиграмм для мужчин (при соблюдении строгой вегетарианской диеты или сыроедения, суточную норму нужно увеличить на 50% от указанной дозы, поскольку из растительных продуктов питания организм меньше поглощает соединения, чем из животных);
  • селен – 55 микрограмм;
  • витамин Е – 15 миллиграмм;
  • аскорбиновая кислота – 75 миллиграмм для женщин, 90 миллиграмм для мужчин (курильщикам рекомендуется увеличить дозировку на 45 %, до 110, 125 миллиграмм соответственно)
  • витамин А – от 1 до 1,5 миллиграмма;
  • медь – 2,5 миллиграмма;
  • хром – от 100 до 150 микрограмм;
  • марганец – от 3,0 до 4,0 миллиграмм;
  • бета-каротин – от 3,0 до 6,0 миллиграмм.

Помните, суточная потребность человека в антиоксидантах зависит от состояния здоровья, наличия сопутствующих заболеваний, пола и возраста человека.

Причины и признаки дефицита

При недостаточном поступлении антиокислителей в организм у людей теряется ясность мышления, снижается работоспособность, слабеет иммунитет, ухудшается зрение, развиваются хронические заболевания. Антиоксиданты ускоряют процесс выздоровления, помогают увеличить продолжительность жизни, снижают уровень повреждения тканей.

Симптомы дефицита антиоксидантов в организме:

  • сухость кожи;
  • быстрая утомляемость;
  • повышенная раздражительность, нервозность;
  • снижение остроты зрения, половой функции;
  • кровоточивость десен;
  • мышечная слабость;
  • частые инфекционные заболевания;
  • гусиная кожа на локтях;
  • низкая работоспособность;
  • плохой сон;
  • депрессия;
  • выпадение зубов, волос;
  • появление преждевременных морщин, высыпаний;
  • замедление роста.

При индивидуальной непереносимости витаминов и минералов – антиоксидантов, потребность в соединениях снижается.

Избыток: почему возникает и как его определить?

Причины повышенной концентрации антиоксидантов в организме:

  • длительный прием медикаментов с высоким содержанием витаминов Е, С, А;
  • злоупотребление продуктами, которые обладают высокой антиоксидантной способностью;
  • прием соединения при индивидуальной непереносимости.

Избыток природных антиоксидантов, поступивших с продуктами питания, не представляет угрозы для здоровья человека и легко выводится из организма. Передозировка синтетических антиокислителей (витаминно-минеральных комплексов) может вызвать гипервитаминоз, который сопровождается нарушениями работы внутренних органов и систем.

Характерные признаки излишка антиоксидантов в организме:

  • головная боль, головокружение;
  • нарушение зрительного восприятия;
  • болезненные ощущения в области сердца, желудка;
  • , спазмы;
  • быстрая утомляемость, апатия;
  • боль в мышцах;
  • тошнота;
  • изжога;
  • расстройства пищеварения;
  • бессонница;
  • нарушение менструального цикла (у женщин);
  • раздражение кожи;
  • повышение внутричерепного давления;
  • боль в суставах.

Несмотря на неоспоримую пользу антиоксидантов, избыточное количество синтетических соединений в организме причиняет вред организму.

Передозировка приводит к образованию камней в почках, желчном пузыре, проблемам с сердцем, атрофии надпочечников, повреждению белых кровяных клеток, аллергическим реакциям, увеличению размеров печени и селезенки. Чтобы избежать данных последствий строго контролируйте уровень потребления синтетических витаминов, минералов – антиоксидантов.

Природные источники

Наибольшее количество антиоксидантов сосредоточено в фруктах и овощах ярких цветов – красного, оранжевого, желтого, фиолетового, синего оттенков.

Чтобы получить максимальную порцию питательных веществ и биологических антиокислителей, данные продукты нужно есть сырыми или слегка проваренными на пару.

Любая термическая обработка (кипячение, обжаривание, запекание) фруктов и овощей на протяжении 15 и более минут убивает полезные соединения, снижает пищевую ценность изделия.

Таблица № 1 «Антиоксидантная способность продуктов»
Наименование лучших продуктов-антиоксидантов Антиоксидантная способность изделия на грамм
Ягоды и фрукты
94,66
Дикая черника 92,50
Черная слива 73,49
Белая слива 62,29
Культивируемая черника 62,10
Орехи
179,50
135,51
(лесной орех) 135,51
79,93
44,64
Овощи
Маленькая красная фасоль 149,31
Обычная красная фасоль 144,23
123,69
94,19
Чёрные бобы 80,50
Специи
3144,56
Молотая корица 2675,46
Душицы лист 2001,39
1592,87
Сушёная петрушка 743,59

Согласно результатам исследований Бостонского Университета в США, наибольшую антиоксидантную способность проявляют растительные продукты, в частности, специи.

Другие природные источники антиоксидантов: томаты, , кабачки, цельные зерна, свежевыжатые , черноплодной рябины.

Данные продукты обезвреживают свободные радикалы, повышают иммунитет, активизируют ферментную активность и снижают риск развития дегенеративных болезней.

Лекарственные препараты – антиоксиданты

Неблагоприятная экологическая обстановка, вредные привычки (курение), работа на опасном производстве вызывают повышенную потребность организма в антиоксидантах.

В результате природных биологических антиокислителей, поступающих с продуктами питания, становится недостаточно, что приводит к истощению запасов каротиноидов, минералов, витаминов. Чтобы не допустить дефицит полезных нутриентов в организме применение синтетических форм соединения (в таблетированном или капсулированном виде) становится необходимым.

Наиболее полезные лекарственные антиоксиданты:

  1. Липин. Относится к категории природных фосфатидинхолинов. Проявляет выраженное противогипоксическое действие, увеличивает скорость кислородной тканевой диффузии, стимулирует активность клеток эпителия. Липин ингибирует переокисное окисление триглицеридов в тканях, плазме крови, выполняет роль детоксицирующего агента. Применяется в качестве иммуномодулирующего препарата, способного влиять на общий метаболизм, пищеварительную систему.
  2. Коэнзим Q10. Это кофермент, который обладает сильной антиоксидантной активностью, оптимизирует процесс окислительного фосфорилирования. Благодаря данным свойствам, коэнзим Q10 улучшает снабжение клеток энергией. Кроме того, препарат восстанавливает активность токоферола для борьбы со свободными радикалами, помогает нейтрализовать их пагубное влияние на организм. В результате вещество защищает ДНК и клеточные мембраны от повреждения.Входящий в состав коэнзима убихинон замедляет процессы старения, активизирует кровообращение.
  3. Глутаргин. Соединение представляет собой комбинацию глутаминовой кислоты и соли аргинина. Основная роль препарата заключается в нейтрализации и выведении из организма человека токсичного аммиака. Глутаргин обладает гепатопротекторным свойством, оказывает антигипоксический, мембраностабилизирующий, антиоксидантный эффекты. Используется для снятия симптомов алкогольной интоксикации, лечения заболеваний печени.
  4. Дибикор, Кратал. Препараты проявляют стрессопротекторное, гипогликемическое, нейромедиаторное, антиоксидантное и антиаритмическое действие на организм. Улучшают сократительную способность миокарда, снижают артериальное давление, устраняют лабильность настроения, проявления интоксикации сердечными гликозидами.Рекомендуются к использованию при сердечной недостаточности, эндокринных нарушениях, вегетоневрозах, лечении нейроциркуляторных дистоний.
  5. Аспаркам, Панангин. Препараты содержат калий и магний, которые регулируют метаболические процессы в организме человека, оказывая антиаритмическое действие. Они способствуют восстановлению электролитного баланса.Аспаркам участвует в мышечных сокращениях, передаче импульсов по нервным волокнам, синтезе РНК, поддержании нормальной работы сердца. Входит в структуру ДНК, стимулирует межклеточный синтез фосфатов, препятствует чрезмерному высвобождению катехоламина при стрессе.Панагин запускает моторику пищеварительного тракта, способствует проникновению ионов калия, магния во внутриклеточное пространство, укрепляет иммунную систему.Препараты используют для лечения желудочковой экстрасистолии, коронарной недостаточности и аритмии сердца, вызванной электролитными нарушениями, интоксикацией медикаментами наперстянки. Кроме того, панангин и аспаркам назначают как вспомогательное средство при шоковых состояниях, ишемической болезни сердца, гипокалиемии и гипомагниемии, хронической недостаточности кровообращения.
  6. Эссенциале. Активное вещество препарата – эссенциальные фосфолипиды, которые по химической структуре схожи с эндогенными мембранными фосфолипидами. Однако, превосходят их по своим функциональным свойствам из-за высокого уровня линолевой кислоты в составе.

Фосфолипиды – основной структурный элемент клеточных мембран, органел. Соединения участвуют в делении, регенерации, дифференциации клеток. Эссенциале улучшает функцию мембран, биологическое окисление, ионный обмен, внутриклеточное дыхание. Кроме того, препарат влияет на окислительное фосфорилирование в энергетическом обмене клеток, увеличивает детоксикационную способность печени, восстанавливает мембраносвязанные ферментные системы.

Таким образом, субстракты свободнорадикального окисления (липин, эссенциале), биоаксиданты (коэнзим Q10) и лекарства пептидов, нуклеиновых, аминокислот (глутаргин, панангин, аспаркам, дибикор, кратал) проявляют мощные антиоксидантые свойства, защищают, реактивируют клетки от повреждений и обладают сильным иммуномоделирующим действием.

Витаминные препараты – антиоксиданты

Выраженную антиокислительную способность проявляют водо- (цианокобаламин, рутин, кверцетин, никотинамид, никотиновая, аксорбиновая кислоты), жирорастворимые (токоферол, ретинол) витамины и минералы (хром, марганец, цинк, селен, медь). Для достижения мощного антиоксидантного эффекта прием данных нутриентов нужно комбинировать.

Рассмотрим популярные комплексы, которые помогут утолить витаминный голод без опасения передозировки. Одна – две таблетки в сутки гарантируют защиту организму от разрушительного действия свободных радикалов и авитаминоза. Курс лечения составляет – 1 – 2 месяца. Принимать комплекс следует ежедневно по одной – две таблетки (согласно инструкции производителя) после еды, запивая 150 миллилитрами воды.

Витаминно-минеральные антиоксиданты:

  1. Витрум-форте Q10. Улучшает кровоснабжение жизненно важных органов, тормозит преждевременное «изнашивание» систем, понижает уровень холестерина в крови.
  2. Витрум-антиоксидант. В состав одной таблетки входят витамины и минералы, обладающие сильными антиоксидантными способностями (цинк, марганец, селен, медь, токоферол, аскорбиновая кислота, ретинол). Комплекс предназначен для усиления сопротивляемости организма к ОРВИ заболеваниям, профилактики гиповитаминоза, защиты клеток от агрессивного действия свободных радикалов.Витрум-антиоксидант понижает вероятность развития патологий сердца, онкологических болезней.Противопоказания к приему препарата: инфаркт миокарда, тяжелый кардиосклероз, беременность, лактация, тромбоэмболия, индивидуальная непереносимость компонентов.
  3. Селен форте. Отличительная особенность данного медикамента – минимум составляющих веществ при максимальной антиокислительной активности препарата. Одна таблетка содержит суточную дозу селена и витамина Е. Средство проявляет антиоксидантные, иммуномодулирующие и детоксицирующие свойства, участвует в обмене веществ, поддерживает сердечно-сосудистую систему в норме. Селен форте защищает клеточные мембраны, усиливает антиокислительную способность токоферола, поддерживает сексуальную активность мужчин и эластичность кровеносных сосудов.
  4. Синергин. Особенность данного препарата – сочетание водорастворимых, липофильных антиоксидантов в составе, которые повышают эффективность нейтрализации свободных радикалов внутри каждой клетки, всех тканей. В состав синергина входят рутин, бета-каротин, витамины А, С, Е, липоевая и янтарная кислоты, убихинон (составной элемент коэнзим Q10), оксид магния, ликопин.
  5. Ресверальгин. Представляет собой биологически активную добавку к пище, которая содержит селен, коэнзим Q10, ресвератрол, витамины С, Е, йод, флавоноиды, бета-каротин. Данный медикамент содержит в своем составе мощные антиоксиданты и проявляет свойства, подобные синергину.

Таким образом, антиоксиданты – важнейшие соединения для человеческого организма, которые ингибируют окисление на клеточном уровне, защищают мембраны от повреждений, нейтрализуют разрушающее действие свободных радикалов и проявляют иммуномодулирующую функцию. Нехватка веществ ухудшает состояние здоровья, ведет к преждевременному старению кожи, снижает работоспособность, увеличивает риск развития злокачественных образований.

Извозчикова Нина Владиславовна

Специальность: инфекционист, гастроэнтеролог, пульмонолог .

Общий стаж: 35 лет .

Образование: 1975-1982, 1ММИ, сан-гиг, высшая квалификация, врач-инфекционист .

Научная степень: врач высшей категории, кандидат медицинских наук.

Сегодня все говорят об антиоксидантах. Одни считают их мощным оружием против старения, другие - обманом фармацевтов, третьи - вообще потенциальным катализатором рака. Так стоит ли принимать антиоксиданты? Для чего нужны эти вещества? Из каких препаратов их можно получить? Об этом расскажем в статье.

Понятие

Антиоксиданты - это химические вещества, способные связывать свободные радикалы и тем самым замедлять процессы окисления. Антиоксидант в переводе - «антиокислитель». Окисление - это, по сути, взаимодействие с кислородом. Именно этот газ виноват в том, что разрезанное яблоко приобретает коричневый оттенок, железо ржавеет под открытым небом, а опавшие листья загнивают. Что-то подобное случается и в нашем организме. Внутри каждого человека функционирует антиоксидантная система, борющаяся на протяжении жизни со свободными радикалами. Однако после сорока лет эта система уже не может полноценно справляться с возложенной на нее задачей, особенно в том случае, когда человек курит, употребляет некачественную пищу, загорает без использования защитных средств и тому подобное. Помочь ей можно, если начать принимать антиоксиданты в таблетках и капсулах, а также в виде инъекций.

Четыре группы веществ

В настоящее время уже известно более трех тысяч антиоксидантов, и их число продолжает увеличиваться. Все они подразделяются на четыре группы:

  1. Витамины. Бывают водорастворимыми и жирорастворимыми. Первые защищают сосуды, связки, мышцы, а вторые - жировые ткани. Бета-каротин, витамин А, витамин Е - антиоксиданты, самые мощные среди жирорастворимых, а витамин С, витамины В-группы - среди водорастворимых.
  2. Биофлавоноиды. Для свободных радикалов действуют как ловушка, подавляют их формирование и помогают выводить токсины. К биофлавоноидам главным образом относятся содержащиеся в красном вине катехины и кверцетин, которого много в зеленом чае и цитрусовых.
  3. Ферменты. Играют роль катализаторов: увеличивают скорость обезвреживания свободных радикалов. Вырабатываются организмом. Можно и извне дополнительно получить эти антиоксиданты. Препараты, такие как, например, «Коэнзим Q10», восполнят недостаток энзимов.
  4. В организме не производятся, получить их можно только извне. Самые сильные антиоксиданты этой группы - кальций, марганец, селен, цинк.

Антиоксиданты (препараты): классификация

Все антиокислители, по происхождению являющиеся лекарственными средствами, делятся на препараты ненасыщенных жирных кислот; препараты белков, амино- и нуклеиновых кислот, вступающих в реакцию с продуктами свободнорадикального окисления; витамины, флавоноиды, гормоны и микроэлементы. Расскажем о них подробнее.

Субстраты свободнорадикального окисления

Так называют препараты которые содержат омега-3 кислоты. К ним относят «Эпадол», «Витрум кардио», «Теком», «Омакор», рыбий жир. Основные омега-3-полиненасыщенные кислоты - декозогексановая и эйкозапентаеновая - при введении извне в организме восстанавливают свое нормальное соотношение. Сильнейшие антиоксиданты этой группы перечислим ниже.

1. Препарат «Эссенциале»

Это комплексное средство, содержащее, помимо фосфолипидов, витамины с антигипоксантными (никотинамид, тиамин, пиридоксин, рибофлавин) и антиоксидантными (цианокобаламин, токоферол) свойствами. Препарат применяют в пульмонологии, акушерстве, гепатологии, кардиологии, офтальмологии.

2. Средство «Липин»

Это антигипоксант и природный мощный антиоксидант, восстанавливающий функциональную активность эндотелия, обладающий иммуномодулирующим, мембранопротекторным свойствами, поддерживающий антиоксидантную систему организма, положительно влияющий на синтез сурфактанта, легочную вентиляцию.

3. Лекарства «Эспа-Липон» и «Берлитион»

Эти антиоксиданты при гипергликемии снижают в крови уровень глюкозы. Тиоктовая кислота представляет собой эндогенно образуемое в организме и участвующее как кофермент в декарбоксилировании а-кетокислот. Средство «Берлитион» назначают при диабетической нейропатии. А препарат "Эспа-Липон", являющийся, кроме всего прочего, гиполипидемическим средством, гепатопротектором и детоксикантом, используют при интоксикациях ксенобиотиками.

Препараты пептидов, нуклеиновых и аминокислот

Средства данной группы могут применяться как в моно- так и в комплексной терапии. Среди них можно отдельно отметить глютаминовую кислоту, способную наравне со способностью выводить аммиак, стимуляцией энергопродуцирующих и окислительно-восстановительных процессов, активацией синтеза ацетилхолина также оказывать значительное антиоксидантное влияние. Данная кислота показана при психозах, психическом истощении, эпилепсии, реактивных депрессиях. Ниже рассмотрим самые сильные антиоксиданты природного происхождения.

1. Средство «Глутаргин»

Этот препарат в составе имеет глютаминовую кислоту и аргинин. Он производит гипоаммониемический эффект, обладает антигипоксической, мембраностабилизирующей, антиоксидантной, гепато- и кардиопротекторной активностью. Применяется при гепатитах, циррозе печени, для профилактики алкогольной интоксикации, устранения похмельного синдрома.

2. Лекарственные средства «Панангин» и «Аспаркам»

Данные антиоксиданты (препараты аспарагиновой кислоты) стимулируют образование АТФ, окислительное фосфорилирование, улучшают моторику пищеварительного тракта и тонус скелетных мышц. Эти лекарства назначают при кардиосклерозе, аритмиях, сопровождающихся гипокалиемией, стенокардии, миокардиодистрофии.

3. Препараты «Дибикор» и «Кратал»

Эти средства содержат таурин - аминокислоту, обладающую стрессопротекторным, нейромедиаторным, кардиопротекторным, гипогликемическим свойствами и регулирующую высвобождение пролактина и адреналина. Препараты, содержащие таурин, - лучшие антиоксиданты, защищающие от поражения раздражающими веществами легочную ткань. В комплексе с иными медикаментами рекомендуется использовать средство «Дибикор» при сахарном диабете, сердечной недостаточности. Препарат «Кратал» применяют при ВСД, вегетоневрозах, пострадиационном синдроме.

4. Медикамент «Церебролизин»

Лекарство включает в качестве активного ингредиента гидролизат вещества из мозга свиньи, освобожденный от белка, содержащий аминокислоты и комплекс пептидов. Средство снижает в тканях мозга содержание лактата, поддерживает гомеостаз кальция, стабилизирует мембраны клеток, уменьшает нейротоксическое действие возбуждающих аминокислот. Это очень мощный антиоксидант, который назначают при инсульте, цереброваскулярных патологиях.

5. Лекарство «Цереброкурин»

Данный препарат содержит пептиды, аминокислоты, низкомолекулярные продукты протеолиза. Он производит антиоксидантный, белоксинтезирующий, энергопродуцирующий эффекты. Средство «Цереброкурин» используют при болезнях, связанных с нарушением работы ЦНС, а также в офтальмологии при таких патологиях, как сенильная макулодистрофия.

6. Препарат «Актовегин»

Это лекарство представляет собой высокоочищенный гемодиализат крови. Оно содержит нуклеозиды, олигопептиды, промежуточные продукты жирового и углеводного обмена, благодаря чему усиливает окислительное фосфорилирование, обмен высокоэнергетических фосфатов, увеличивает приток калия, активность щелочной фосфатазы. Препарат проявляет сильное антиоксидантное действие и применяется при органических поражениях глаз, ЦНС, для более быстрой регенерации слизистых оболочек и кожи в случае ожогов, ран.

Биоантиоксиданты

К данной группе относят витаминные препараты, флавоноиды, гормоны. Из некоферментных витаминных средств, одновременно обладающих и антиоксидантным, и антигипоксантным свойствами, можно отметить «Коэнзим Q10», «Рибоксин», «Корагин». Другие антиоксиданты в таблетках и иных лекарственных формах опишем ниже.

1. Лекарство «Энергостим»

Это комбинированное средство, кроме инозима, содержащее никотинамиддинуклеотид и цитохром С. Благодаря композитному составу препарат «Энергостим» проявляет взаимодополняющие антиоксидантное и антигипоксантное свойства. Лекарство применяется при инфаркте миокарда, алкогольном гепатозе, миокардиодистрофии, гипоксии мозговых клеток

2. Витаминные препараты

Как уже отмечалось, выраженную антиоксидантную активность проявляют водо- и жирорастворимые витамины. Из жирорастворимых средств можно выделить «Токоферол», «Ретинол» и иные медикаменты, содержащие каротиноиды. Из препаратов водорастворимых витаминов наибольший антиоксидантный потенциал имеют никотиновая и аскорбиновая кислоты, «Никотинамид», «Цианокобаламин», «Рутин», «Кверцетин».

3. Препарат «Кардонат»

Включает пиридоксаль фосфат, гидрохлорид лизина, хлорид карнитина, хлорид кокарбоксилазы. Данные компоненты принимают участие в до ацетил-КоА. Медикамент активизирует процессы роста и ассимиляции, производит анаболические гепато-, нейро-, кардиопротекторный эффекты, в значительной степени повышает физическую и интеллектуальную работоспособность.

4. Флавоноиды

Из препаратов с содержанием флавоноидов можно выделить настойки боярышника, эхинацеи, пустырника, Данные средства, кроме антиоксидантного, обладают также иммуномодулирующим и гепатопротекторным свойствами. Антиокислителями выступают облепиховое масло, содержащее ненасыщенные жирные кислоты, и отечественные фитопрепараты, выпускаемые в форме капель: «Кардиотон», «Кардиофит». Настойку боярышника следует принимать при нарушениях работы сердца функционального характера, настойку пустырника - как седативное средство, настойки радиолы розовой и эхинацеи - как средства общетонизирующего действия. Облепиховое масло показано при язвенной болезни, простатите, гепатите.

5. Средство «Витрум антиоксидант»

Это комплекс минералов и витаминов, проявляющий выраженную антиоксидантную активность. Препарат на уровне клеток защищает организм от разрушительного воздействия свободных радикалов. В состав средства «Витрум антиоксидант» входят витамины А, Е, С, а также микроэлементы: марганец, селен, медь, цинк. Витаминно-минеральный комплекс принимают для профилактики гиповитаминоза, для увеличения сопротивляемости организма к инфекциям и простудным заболеваниям, после лечения антибактериальными средствами.

В заключение

Антиоксиданты в виде лекарственных препаратов стоит использовать людям после сорокалетнего возраста, заядлым курильщикам, тем, кто зачастую питается фастфудом, а также лицам, работающим в условиях плохой экологии. Пациентам, недавно перенесшим онкологическое заболевание или имеющим высокий риск его развития, прием таких средств противопоказан. И помните: лучше получать антиоксиданты из натуральных продуктов, а не из медикаментов!

Процессы свободнорадикального окисления (СРО) постоянно протекают в клетках и необходимы организму для осуществления ряда важных функций, в том числе дыхания. Однако в здоровом организме процессы свободнорадикального окисления (СРО) находятся под контролем системы антиокислительной защиты (АОЗ), включающей ферментативную систему (супероксиддисмутата, глютатионпероксидаза, каталаза) и биоантиоксиданты.

При развитии инфекционно-воспалительных заболеваний в организме баланс СРО-АОЗ нарушается в сторону усиления процес сов СРО. При этом наблюдается повреждение воспаленных тканей, в том числе и гибель отдельных клеток, усиление протеолитической (окислительной) активности сыворотки крови, разрушение биологически активных белков (в том числе интерферона).

Для восстановления нормального баланса СРО-АОЗ при инфекционно-воспалительных заболеваниях организму необходимы антиоксиданты.

Антиоксиданты обладают различными свойствами, одним из которых является способность к связыванию и выведению из организма пероксидных соединений, которые являются основной причиной гибели клеток. Антиоксидантные свойства токоферола ацетата и аскорбиновой кислоты были многократно изучены и подтверждены в ходе множества экспериментов. Механизм защитного действия витаминов Е и С связан с легкостью их окисления всеми типами активных форм кислорода. При этом продукты их окисления неопасны для организма. Поэтому витамины Е и С, а также их смесь, используются для защиты организма от воздействия свободных радикалов и активных форм кислорода.

Витамин Е, являясь гидрофобным соединением, основное свое антиоксидантное действие оказывает в липидном бислое мембран клеток, препятствуя их разрушению, что способствует сохранению взаимодействия интерферона с клеточными рецепторами, а также нормализует работу функционально активних белков клеточной стенки, восстанавливая работу организма на молекулярном уровне.

Вступая в реакцию перекисного окисления липидов альфа-токоферол как вещество с фенольной структурой отдает атом водорода свободному радикалу пероксида липида (ПОЛ), восстанавливая его до гидропероксида и таким образом останавливает развитие ПОЛ. Свободный радикал альфа-токоферола, образовавшийся в результате реакции, стабилен и не способен участвовать в развитии цепи, далее непосредственно взаимодействует с радикалами липидных перекисей, восстанавливая их, а сам превращается в стабильную окисленную форму - токоферолхинон.

Витамин С (аскорбиновая кислота), являясь гидрофильным соединением, в большей степени проявляет свои свойства в плазме крови, межклеточном веществе и внутренней среде клетки, в том числе препятствуя разрушению интерферона, который еще находится в неактивном состоянии (так как не успел провзаимодействовать с рецепторами клеток), однако обладает полнотой своих биологических свойств. Витамин С опосредовано влияет на сохранность клеточной стенки, поддерживая способность Витамина Е к восстановлению (инактивации) пероксидных соединений.

Витамины С и Е, как антиоксиданты работают в двух средах: витамин Е – в гидрофобной клеточной стенке, препятствуя ее разрушению, а витамин С – в гидрофильных внутриклеточной и межклеточной жидкостях, уничтожая свободные радикалы «на подлете» к цели, что обосновывает умесность комбинированного их использования.

Не менее значимым является участие антиоксидантов в системе противоинфекционной защиты организма. Витамины Е и С имеют самостоятельное иммуномодулирующее действие и участвуют в синтезе эндогенного интерферона. Они существенно усиливают противовирусное, иммуномодулирующее действие интерферона и стабилизируют клеточную стенку, позволяя интерферону взаимодействовать с рецепторами на ее поверхности и проявлять свои биологические свойства.

В результате фундаментальных исследований, проведенных в отделе интерферонов НИИ эпидемиологии и микробиологии им. Н.Ф. Гамалеи РАМН (г. Москва) под руководством профессора Малиновской В.В., было установлено, что в присутствии мембраностабилизирующих компонентов (антиоксиданты - витамины Е и С) противовирусная активность рекомбинантного интерферона возрастает в 10-14 раз (in vitro), усиливается его иммуномодулирующее действие, что позволяет повысить эффективность собственного иммунного ответа организма на патогенне микроорганизмы. В связи с чем совместное использование рекомбинантного интерферона и антиоксидантов (препарат Виферон), позволило снизить дозировку интерферона, сохранив его эффективность.

Кроме того, в присутствии витаминов С и Е повышается уровень секреторных иммуноглобулинов класса А, нормализуется уровень иммуноглобулина Е, происходит восстановление функционирования эндогенной системы интерферона. Аскорбиновая кислота и альфа-токоферола ацетат, являясь высокоактивными антиоксидантами, обладают противовоспалительными, мембраностабилизирующими, а также регенерирующими свойствами.

По данным Шепелева А.П. и соавт., («Роль процессов свободнорадикального окисления в патогенезе инфекционных болезней»,«Вопросы медицинской химии», 2000г.), факт участия антиоксидантов в регуляции клеточного иммунитета не вызывает сомнений. Внутриклеточный оксилительно-восстановительный баланс является регуляторным фактором в процессах Т-клеточной активации, секреции лимфокинов макрофагами, а также клеточной гибели при апоптозе. Выявлено стимулирующее действие антиоксидантов на фагоцитирующую активность макрофагов. Антиоксиданты защищают Т- клетки от гибели по апоптотическому типу под воздействием фактора некроза опухоли (ФНО). Показано, что антиоксиданты обладают противовирусной активностью in vitro и in vivo: при их использовании наблюдается торможение развития вирусной инфекции.

Таким образом, использование антиоксидантов, в частности аскорбиновой кислоты и альфа-токоферола, в лечении инфекционно-воспалительных заболеваний является обоснованным и позволяет увеличить эффективность проводимой терапии

19.10.2015 19:02:26,

Да, действительно, роль антиоксидантов в → Да, действительно, роль антиоксидантов в защите организма доказана многочисленными исследованиями и сомнений не взывает.
В Вифероне они подобраны очень удачно, один работает в клеточной стенке, другой -- непосредственно внутри клетки.

К тому же они опосредовано влияют на выработку интерферона, помогая тем самым организму противостоять инфекции.
К тому же они тормозят развитие вирусной инфекции, помогая ребенку противостоять агрессивному воздействию возбудителей.

Таким образом, включение витамина С и Е в состав препарата Виферон обеспечивает поддержку работы основного вещества--человеческого интерферона 20.10.2015 07:33:13, Олеся Бутузова

Интерсную информацию Вы озвучили, а → Интерсную информацию Вы озвучили, а могли бы дать ссылки на эти исследования или выдержки из описания? потому как мне сложно представить, по каким причинам витамин С можно исключить из антиоксидантов (его активность, как антиоксиданта, напротив, давно доказана). Было бы интересно обсудить иное мнение 22.10.2015 20:26:54, Олеся Бутузова

Правильное и здоровое питаниеПравильное и здоровое питание, безусловно, имеет огромное значение. И мы опять-таки не говорим, что нужно пить витамины круглый год. Но, если у ребенка отмечается снижение защитных сил, если есть признаки гиповитаминоза (что нередко бывает в осенне-зимний период), то почему бы не воспользоваться специально разработанными для этого препаратами?
И на счет фруктов килограммами--это не выдумка, можно в принципе разложить каждый витамин--его суточную потребность и содержание в овощах и фруктах, и станет понятно, что два яблока, банан и горсть ягод в день не решают вопрос полного витаминного насыщения. Однако,в сочетании с мясом, кисломочными продуктами, хлебом и крупами мы можем практически полностью удовлетворять потребности организма. Но! не в условиях нехватки и дефицита витаминов, понимаете?
26.10.2015 20:35:32, Олеся Бутузова

Не могу согласиться с этим утверждением → Не могу согласиться с этим утверждением. Все витамины нужны организму и женщины, и мужчины.
Витамин Е в Вифероне содержится в оптимальной дозе, передозировки или негативного воздействия он вызывать не может. Напротив, он выполняет немаловажные функции, о которых говорится в этом посте.
21.10.2015 00:28:56,

Антиоксиданты - защита организма от окислительного стресса

доступным языком о сложном....

Свободные радикалы (оксиданты, окислители) — это частицы (атомы, молекулы или ионы), как правило, неустойчивые, содержащие один или несколько неспаренных электронов на внешней электронной оболочке, поэтому их молекулы обладают невероятной химической активностью. Поскольку у них есть свободное место для электрона, они всегда стремятся отнять его у других молекул, тем самым окисляя любые соединения, с которыми соприкасаются.

Антиоксиданты или противоокислители — вещества, которые ингибируют процессы окисления.

Рис. 1. Свободные радикалы повреждают оболочку клетки, вызывая преждевременную потерю ею влаги и других жизненно важных элементов.

Существует достаточно веществ самого разного происхождения, способных блокировать реакции свободно-радикального окисления и восстанавливающих окисленные соединения. Сегодня, к примеру, даже далекие от биолог ии люди знают, что организм любого человека остро нуждается в антиоксидантных витаминах: С, Е и бета-каротине. Без них сейчас не обходятся ни один поливитаминный комплекс и ни одно средство от морщин. А с недавних пор стали привлекать к себе особое внимание и вещества микробного происхождения - антиоксидантные ферменты пробиотических микроорганизмов, чей потенциал оказался очень высок. Так в чем же заключаются антиоксидантные свойства перечисленных веществ?

См. дополнительно:

Содержание страницы:

Для тех, кто профессионально интересуется вопросами фундаментальных исследований регуляции окислительных процессов, а также вопросами практического применения антиоксидантов для предотвращения и лечения разнообразных патологий, обусловленных нарушением уровня свободных радикалов и перекисного окисления в организме, рекомендуем ознакомиться с материалами Международной конференции .

На протяжении всей жизни в организме человека протекает множество химических реакций, и для каждой из них требуется энергия. Для получения её организм использует разные вещества, но для её высвобождения, всегда нужен незаменимый компонент - кислород. Окисляя органические соединения, поступающие с пищей, именно он дает нам энергию и жизненные силы. Однако насколько кислород крайне необходим для нас, настолько же и опасен: даруя жизнь, он ее и отбирает.

Как кислород заставляет ржаветь железо, а масло - становиться прогорклым, в процессе жизнедеятельности нашего организма он способен окислять молекулы до невероятно активной формы - состояния т.н. "свободных радикалов", которые в небольшом количестве необходимы организму для участия во многих его физиологических процессах. Однако часто под воздействием различных неблагоприятных факторов число свободных радикалов начинает возрастать сверх необходимой меры и тогда они превращаются в настоящих беспощадных агрессоров, которые разрушают всё, что попадает им "под руку": молекулы, клетки, кромсают ДНК и вызывают настоящие клеточные мутации.

Свободные радикалы провоцируют в организме основное большинство процессов, похожих на настоящее ржавление или гниение - это разложение, которое с годами, буквально в полном смысле слова, "разъедает" нас изнутри. Сейчас без современного учения о свободных радикалах невозможно разобраться в механизмах старения организма...

Так что же такое «свободные радикалы»? Свободные радикалы (ещё их называют - оксиданты) - это атомы, молекулы или ионы, которые на внутренней своей орбите имеют один неспаренный электрон , поэтому их молекулы обладают невероятной химической активностью. Поскольку у них есть свободное место для электрона, они всегда стремятся отнять его у других молекул, т.о. окисляя любые соединения, с которыми соприкасаются.



Радикал, отнявший чужой электрон, становится неактивным и, казалось бы, выходит из игры, однако лишенная электрона (окисленная) другая молекула взамен ему сразу становится новым свободным радикалом и затем, уже она, перенимая эстафету, следом встает на путь очередного "разбоя". Даже молекулы, которые раньше всегда были инертными и ни с кем не реагировали, после такого "разбоя" запросто сами начинают вступать в новые причудливые химические реакции.

В настоящее время развитие многих болезней связывают с разрушительным действием оксидантов — свободных радикалов.

К этим болезням относятся рак, сахарный диабет, астма, артриты, атеросклероз, болезни сердца, болезнь Альцгеймера, тромбофлебиты, рассеянный склероз и другие...

Обозначение и виды свободных радикалов

Для обозначения свободных радикалов в России употребляется сокращение АФК , «активные формы кислорода », в Европе — ROS, reactive oxygen species (что означает в переводе то же самое). Название не совсем точное , так как свободными радикалами могут быть производные не только кислорода, но и азота, хлора, а также реактивные молекулы — например, перекись водорода. Ниже приведены названия некоторых свободных радикалов и радикалобразующих веществ (активные формы кислорода, азота и др.):

Супероксидный радикал или супероксид анинон (O 2 -); гидроксильный радикал или гидроксил (ОН *); гидропероксильный радикал (гидродиоксид) или пероксильный радикал (HO 2 *); Перекись (пероксид) водорода (H 2 O 2); Окись азота (нитроксид радикал или нитрозил-радикал) NO * ; нитродиоксид радикал NO 2 * ; пероксинитрил ONOO - ; азотистая кислота HNO 2 ; гипохлорит ClO * ; гипохлорная кислота HOCl; Липидные радикалы: (алкил) L * , (алкоксил) LO * , (диоксил) LOO * ; алкилгидропероксид RO 2 H; этоксил C 2 H 5 O *


Пероксидные радикалы (ROO *) . Образуются при взаимодействии О 2 с органическими радикалами. Например, липидный пероксил радикал (диоксил) LOO * . Имеет более низкую окислительную способность по сравнению с O H * , но более высокую диффузию. Прим.: Следует не злоупотреблять производными от "пероксид" и "гидропероксид". Группа из двух связанных между собой атомов кислорода называется "диоксид". В соответствии с этим радикал ROO * рекомендуется называть "алкилдиоксилом" (RО 2 *). Допускается и название "алкилпероксил".

Алкоксильные радикалы (RO *) . Образуются при взаимодействии с липидами и являются промежуточной формой между ROO * и O H * радикалами. Например, липидный радикал (алкоксил) LO * индуцирует ПОЛ (перекисное окисление липидов), обладает цитотоксическим и канцерогенным действием.

Таблица 1. Названия некоторых радикалов и молекул согласно рекомендациям Комиссии по Номенклатуре Неорганической Химии (1990 )

Формула

Структурная формула

Название радикала

O· -

·O -

Оксид (1-), оксид

О 2

·ОО·

Диоксиген

О 2 · -

·ОО -

Диоксид (1-), супероксид, диоксид

Триоксиген, озон

°O 3 · -

·OOO -

Триоксид (1-), озонид

HO·

HO· или ·OH

Гидроксил

HO 2 ·

HOO·

Гидродиоксид, гидродиоксил

Н 2 O 2

HOOH

Перекись водорода

RO·

RO·

Алкоксил

C 2 H 5 O·

CH 3 CH 2 O·

RO 2 ·

ROO·

Алкилдиоксил

RO 2 H

ROOH

Апкилгидропероксид

Первичные, вторичные и третичные свободные радикалы.

Первичные свободные радикалы постоянно образуются в процессе жизнедеятельности организма в качестве средств защиты против бактерий, вирусов, чужеродных и переродившихся (раковых) клеток. Так, фагоциты выделяют и используют свободные радикалы в качестве оружия против микроорганизмов и раковых клеток. При этом фагоциты сначала быстро поглощают большое количество О 2 (дыхательный взрыв), а затем используют его для образования активных форм кислорода. По мнению ученых, считается нормальным, если примерно 5% веществ, образовавшихся в ходе химических реакций, — это свободные радикалы. В малом количестве они необходимы нашему организму, потому что только при их участии иммунная система может бороться с болезнетворными микроорганизмами. Но избыток их губителен и, к сожалению, неизбежен.

Таблица 2. Первичные радикалы, образующиеся в нашем организме

Название

Структура

Образуется

Биологическая роль

Супероксид

·OO -

НАДФН-оксидаза

Антимикробная защита

Нитроксид

·NO

NO-синтаза

Фактор расслабления сосудов

Убихинол

Дыхательная цепь митохондрий

Переносчик электронов

Вторичные радикалы , в отличие от первичных, не выполняют физиологически полезных функций. Напротив, они оказывают разрушительное действие на клеточные структуры, стремясь отнять электроны у «полноценных» молекул, вследствие чего «пострадавшая» молекула сама становится свободным радикалом (третичным ), но чаще всего слабым, не способным к разрушающему действию.

Таблица 3. Вторичные радикалы

Именно образование вторичных радикалов (а не радикалов вообще) вызывает , ведущий к развитию патологических состояний и лежащий в основе канцерогенеза, атеросклероза, хронических воспалений и нервных дегенеративных болезней. Факторы, вызывающие оксидативный стресс, — нарушение окислительно--восстановительного равновесия в сторону окисления и образования вторичных свободных радикалов — многочисленны и напрямую связаны с нашим образом жизни.

ИСТОЧНИКИ СВОБОДНЫХ РАДИКАЛОВ

Источники из окружающей среды:

Это: радиация, курение, напитки с высокой окислительной способностью, хлорированная вода, загрязнение окружающей среды, окисление почвы и кислотные дожди, непомерное количество консервантов и полуфабрикатов, антибиотики и ксенобиотики, компьютеры, телевизоры, мобильники. сигаретный дым, ионизированный воздух; Высокообработанная, просроченная, испорченная еда и лекарства. Кроме всего этого свободные радикалы могут также образовываться в нормальных процессах метаболизма, под влиянием солнечных лучей (фотолиз), радиоактивного облучения (радиолиз) и даже ультразвуков.

Например, казалось бы, полезное для загара, но однако мощное ультрафиолетовое излучение солнца способно «выбивать» электроны из молекул клеток кожи и как результат «родные» молекулы превращаются в свободные радикалы. Основной белок кожи - коллаген, при столкновении со свободными радикалами кислорода, становится химически активным настолько, что способен связаться с другой молекулой коллагена. Образовавшиеся в результате такого процесса молекулы, обладая всеми свойствами обычной молекулы коллагена, тем не менее, в силу размеров менее эластичны, а их накопление ведет к появлению морщин.

Рисунок 2 - Источники повреждения ДНК (DNA) свободными радикалами

Источники внутри организма:

В процессах образования энергии в митохондриях, например из углеродов; В процессе распада вредных жиров в организме при сжигании многонасыщенных жирных кислот; В воспалительных процессах, при нарушениях метаболизма - диабет; В продуктах обмена веществ в толстом кишечнике.

Стресс (психо-эмоциональный) также способствуют окислительному стрессу. Состояние стресса заставляет организм вырабатывать адреналин и кортизол. В больших количествах эти гормоны нарушают нормальное протекание обменных процессов и способствуют появлению свободных радикалов во всем организме.

Основными "фабриками" по производству свободных радикалов в нашем организме служат маленькие продолговатые тельца внутри живой клетки — митохондрии , самые главные её энергетические станции .

Возникнув в них, радикалы повреждают оболочки митохондрий, а также другие внутренние структуры клетки, и это усиливает их утечку. Со временем активных форм кислорода становится там все больше и больше, в результате чего они полностью разрушают клетку и распространяются по всему организму. Как "молекулярные террористы" они хаотично "рыщут" по всем живым клеткам и, внедряясь туда, повергают вокруг себя всё в хаос. Свободные радикалы также могут еще образовываться во многих продуктах нашего питания, например, таких, как: кондитерские изделия длительных сроков хранения, мясные продукты и продукты растительного происхождения. Особенно это касается жиров, содержащих ненасыщенные жирные кислоты, которые очень легко окисляются.

Митохондрия — двумембранный сферический или эллипсоидный органоид диаметром обычно около 1 микрометра. Характерна для большинства эукариотических клеток. Энергетическая станция клетки; основная функция — окисление органических соединений и использование освобождающейся при их распаде энергии для генерации электрического потенциала, синтез а АТФ и термогенеза. Эти три процесса осуществляются за счёт движения электронов по электронно-транспортной цепи белков внутренней мембраны.

Многие из вышеперечисленных факторов нам неподвластны, что-то мы и не хотим менять, но многое мы все же в силах изменить. Во всяком случае знать своих «врагов» в лицо мы просто обязаны. Реакции с участием свободных радикалов могут являться причиной или осложнять течение многих опасных заболеваний, таких как астма, артрит, рак, диабет, атеросклероз, болезни сердца, флебиты, болезнь Паркинсона, болезнь Альцгеймера, эпилепсия, рассеянный склероз, депрессии и другие.

ВОЗДЕЙСТВИЕ СВОБОДНЫХ РАДИКАЛОВ НА ОРГАНИЗМ

Отрицательные результатов действия свободных радикалов:

  • Повреждение клеточной мембраны, способствует развитию сердечных заболеваний.
  • Повреждение внутриклеточных механизмов, вызывают генетические поломки и, обусловливают предрасположенность к раку.
  • Снижение функции иммунной системы, ведет к увеличению восприимчивости к инфекциям, повышенному риску рака и неспецифических воспалительных заболеваний, таких, как ревматоидный артрит.
  • Повреждение белков кожи, снижают ее эластичность и ускоряют появление морщин.

Таблица 4. Некоторые заболевания, связанные с действием активных форм кислорода (Surai & Sparks, 2001)

Орган, ткань

Заболевание

Сердце и сердечно-сосудистая система

атеросклероз, гемохроматоз, болезнь Кешана, инфаркт, реперфузия, алкогольная кардиомиопатия

Печень

реперфузия, цирроз

Почки

аутоиммунный нефроз (воспаление)

Легкие

эмфизема, рак, бронхолегочная дисплазия, азбестоз, идиопатогенный легочный фиброз

Мозг и нервная система

болезнь Паркинсона, болезнь Альцгеймера, дискинезия, аллергический энцефаломиелит, множественный склероз

Глаза

Катаракта, возрастное разрушение желтого пятна, рети-нопатия

Кровь

малярия, различные формы анемии, фавизм,

Желудочно-кишечный тракт

реперфузия, панкреатит, колит, гастрит, язва, кишечная ишемия

Мышцы

мускульная дистрофия, физические перетренировки

Кожа

радиация, ожоги, контактный дерматит, порфирия

Иммунная система

гломерулонефрит, васкулит, аутоиммунные заболевания, ревматоидный артрит

Другое

СПИД, воспаления, травма, облучение, старение, рак, диабет

Свободные радикалы атакуют наш организм 24 часа в сутки, но их атаки могут происходить чаще или реже. Это зависит от многих факторов. Курение, алкоголь, стрессы, неправильное питание и долгое пребывание на солнце увеличивают количество свободных радикалов, а правильный образ жизни, полноценный отдых и рациональное питание, наоборот, снижают их активность. Объектами атак свободных радикалов в организме человека преимущественно являются соединения, которые имеют двойные связи в частицах, например: белок, ненасыщенные жирные кислоты, входящие в состав клеточной оболочки, полисахариды, липиды и даже ДНК.

1. ЭНЕРГЕТИЧЕСКАЯ ДИСФУНКЦИЯ МИТОХОНДРИЙ КЛЕТКИ

Состояние организма при старении напрямую связано с состоянием (энергетических станций) клеток. При различных патологических состояниях энергетические функции митохондрий резко ослабевают. Причина кроется в нарушении окислительного процесса. Выделен целый класс болезней, которые названы митохондриальными . Это болезни, связанные с распадом нервной системы (нейродегенеративные) - синдром Альцгеймера, болезнь Паркинсона, а также заболевания связанные с нарушением питания тканей: кардиомиопатия, диабет, мышечная дистрофия.

Рисунок 3 - Митохондриальное старение клетки

Свободные радикалы вызывают повреждение наружной клеточной мембраны (разрушение рецепторного аппарата клетки и снижение чувствительности клетки к гормонам и медиаторам), ДНК (нарушают генетический код), митохондрий (нарушение энергетического обеспечения клетки).

2. ПЕРЕКИСНОЕ ОКИСЛЕНИЕ ЛИПИДОВ


Наиболее серьезным следствием появления свободных радикалов в клетке является перекисное окисление. Перекисным его называют потому, что его продуктами являются перекиси. Чаще всего по перекисному механизму окисляются ненасыщенные жирные кислоты, из которых состоят мембраны живых клеток...

Процесс перекисного окисления липидов (ПОЛ) является важной причиной накопления клеточных дефектов. Основным субстратом ПОЛ являются полиненасыщенные цепи жирных кислот (ПНЖК), входящих в состав клеточных мембран, а также липопротеинов. Их атака кислородными радикалами приводит к образованию гидрофобных радикалов, взаимодействующих друг с другом.

Вначале происходит атака сопряженных двойных связей ненасыщенных жирных кислот со стороны св. радикалов (гидроксила и гидродиоксида), что приводит к появлению липидных радикалов.

Липидный радикал может реагировать с О 2 с образованием пероксильного радикала, который, в свою очередь, взаимодействует с новыми молекулами ненасыщенных жирных кислот и приводит к появлению липидных пероксидов. Скорость этих реакций зависит от активности антиоксидантной системы клетки.

При взаимодействии с комплексами железа гидроперекиси липидов превращаются в активные радикалы, продолжающие цепь окисления липидов.

Образующиеся липидные радикалы, могут атаковать молекулы белков и ДНК. Альдегидные группы этих соединений образуют межмолекулярные сшивки, что сопровождается нарушением структуры макромолекул и дезорганизует их функционирование. Окисление липидов свободными радикалами вызывает глаукому, катаракту, цирроз, ишемию и т.д....

Каждая клетка организма состоит из множества элементов, каждый из которых, да и вся она, окружены оболочками — мембранами. Ядро клетки также защищено мембраной. Таким образом до 80% массы клетки в ней могут составлять различные мембраны, а они состоят из легко окисляющихся жиров, очень слабо удерживающих электроны. Поэтому свободные радикалы наиболее легко вырывают электроны, именно, из мембран. Такое окисление называются перекисным окислением липидов.

Перекисное окисление липидов приводит к драматическим последствиям в организме − нарушаются целостность и функция самих мембран: они теряют способность нормально пропускать в клетку питательные вещества и кислород, но при этом начинают лучше пропускать болезнетворные бактерии и токсины. Такие клетки начинают плохо работать, меньше живут, плохо делятся и дают слабое, а то и вовсе генетически поврежденное потомство. Дестабилизация и нарушение барьерных функций мембран может привети к развитию катаракты, артрита, ишемии, нарушению микроциркуляции в тканях мозга. Под действием свободных радикалов возрастает содержание пигментов старения, например меламина, цероида и липофусцина, в нервах, внутренних органах, коже и сером веществе мозга. Головной мозг особо чувствителен к гиперпродукции свободных радикалов и окислительному стрессу, так как в нем содержится множество ненасыщенных жирных кислот, таких как, например, лецитин. При их окислении в мозгу повышается уровень липофусцина (липофусциновые гранулы образуются прежде всего из деградировавших (старых) митохондрий). Это один из пигментов изнашивания, избыток которого ускоряет процесс старения.

Свободно-радикальное окисление не только само по себе вызывает старение организма. Оно усугубляет течение других возрастных заболеваний, еще более ускоряя процессы старения. Изменения молекул мембран клеток, вызванные атакой свободных радикалов, оказывают разрушительное воздействие и на сердечнососудистую систему: компоненты крови становятся «липкими», стенки сосудов пропитываются липидами и холестерином, в результате возникают тромбоз, атеросклероз и другие заболевания. Дело в том, что окисленный холестерин низкой плотности (LDL-Cholesterin) сам не может проникнуть в атеросклеротическую бляшку без предварительного свободно-радикального окисления, поэтому он «прилипает» к стенкам сосудов, что и ведет к развитию атеросклероза. Таким образом, между активностью свободнорадикального окисления и прогрессированием существует прямая зависимость. Научные исследования показали, что у пациентов с инфарктом миокарда концентрация окисленного ЛПНП (липопротеинов низкой плотности) явно выше, чем у здоровых людей. Таким образом, свободные радикалы во многом причастны к развитию таких заболеваний, как: инфаркт, инсульт, ишемия, рак, заболевания нервной и иммунной систем, кожи.

Как уже было сказано выше, кислородсодержащие свободные радикалы опасны из-за своей способности реагировать с жирными кислотами. В результате образуются продукты «перекисного окисления липидов», или сокращенно «ПОЛ». Эти продукты обладают еще более сильным повреждающим действием, чем кислородсодержащие свободные радикалы, и некоторые из них токсичнее в тысячи раз. Промежуточные продукты распада (альдегиды, перекиси, гидроксиальдегиды, кетоны, продукты распада трикарбоновых кислот) являются высокотоксичными веществами, так как сами могут усиливать процессы перекисного окисления или вступать во взаимодействие с макромолекулами белков. Окисление липидов играет большую роль в развитии хронических заболеваний печени (гепатита, цирроза). В условиях активации процессов перекисного окисления липидов (ПОЛ) мембран гепатоцитов (клеток печени), в печени могут образоваться изменения в виде дегенерации и некроза ее клеток. Здесь следует отметить, что при ухудшении функционального состояния гепатоцитов показатели антиоксидантной активности липидов также снижаются.

Точно так же перекисное окисление может идти в маслах, которые содержат ненасыщенные жирные кислоты, и тогда масло прогоркает (перекиси липидов имеют горький вкус). Опасность перекисного окисления в том, что оно протекает по цепному механизму, т. е. продуктами такого окисления являются не только свободные радикалы, но и липидные перекиси, которые очень легко превращаются в новые радикалы. Таким образом, количество свободных радикалов, а значит, и скорость окисления лавинообразно нарастают.

3. ПОВРЕЖДЕНИЕ БЕЛКА

Свободные радикалы повреждают белок. Окисление липидов приводит к нарушению нормальной упаковки мембранного бислоя, что может вызвать повреждение и мембраносвязанных белков . Наиболее распространенный и легко обнаруживаемый тип повреждения белков - образование карбонильных групп при окислении аминокислот : лизина , аргинина и пролина . В таблице 5 представлены данные по концентрации карбонильных групп в белках в различных тканях человека и крысы. Из таблицы видно, что концентрация карбонильных групп и, следовательно, уровень окислительных повреждений в белках не зависят ни от вида организма, ни от типа ткани. При анализе использовали данные для молодых организмов, так как уровень поврежденных белков зависит от возраста.

Таблица 5. Уровень окисленных белков в разных тканях и организмах

Организмы и их ткани

(нмоль/мг белка)

Человек <30 лет

фибробласты

2.3-2.66

скелетные мышцы

1.6-2.42

Крыса <12 месяцев

печень

1.9-2.4

лимфоциты

1.9-2.4

Этот уровень составляет 1.5-2.5 нмоль/мг белка, и у молодых особей никогда не превышает 3 нмоль/мг. Такой результат представляется особенно удивительным, поскольку разные организмы, а также различные ткани сильно различаются по интенсивности метаболизма, а следовательно, и по интенсивности продукции свободных радикалов. Каким же образом концентрация поврежденных белков в клетке поддерживается на постоянном уровне? Скорость производства свободных радикалов в клетке зависит, прежде всего, от интенсивности дыхания. Для того, чтобы при усилении дыхания степень повреждения белков поддерживалась на постоянном уровне, необходимо, чтобы при этом происходило увеличение скорости обновления поврежденных белков. То есть скорости дыхания и обновления белков в различных тканях и организмах должны быть коррелированы.

В условиях окислительного стресса происходит окислительная модификация белков. Свободные радикалы атакуют белки по всей длине полипептидной цепи, нарушая не только первичную, но и вторичную, и третичную структуру белков, что приводит к агрегации или фрагментации белковой молекулы.


Результатом свободно-радикальной атаки на белковые соединения клетки организма являются резкие процессы ее старения. Это хорошо видно по внешности. Кожа становится сухой, старой, обвислой. Мышцы ослабевают, утрачивая при этом свою пружинистость (собранность). Как Вы уже догадались, то же самое происходит и внутри организма, только результаты намного хуже. Стареет целый организм, поскольку стареют все клетки, в которых белок атакован свободными радикалами. Например, связанное с перекисным окислением липидов окисление белков и образование белковых агрегатов в хрусталике глаза заканчивается его помутнением, что ведет к развитию диабетической и старческой катаракты и т.д.

4. ПОВРЕЖДЕНИЕ ДНК

Радикалы, образующиеся при перекисном окислении липидов (ПОЛ), также повреждают молекулы ДНК . Свободно-радикальное повреждение ДНК (генетического кода клетки) приводит к изменениям в структуре ее кода, ее свойств и даже мутации. Смутированные клетки больше не могут выполнять свои прежние функции, поэтому они могут вырваться из под контроля и начать безсистемно размножаться, что со временем может привести к образованию раковой опухоли. ДНК, как и холестерин, является излюбленной мишенью свободных радикалов. Это кислота, обеспечивающая хранение и передачу генетической программы содержит полную информацию и о той клетке, в которой молекула ДНК находится, а также об устройстве и потребностях других клеток организма. Молекулы ДНК содержат информацию о вашем росте, весе, цвете глаз, о вашем давлении и болезнях, к которым вы предрасположены.

В ряде экспериментов было показано, что митохондриальная ДНК (мтДНК) подвергается окислительному действию свободных радикалов даже в большей степени, чем ядерная, так как она находится в непосредственной близости от источников активных форм кислорода и не защищена гистонами. При взаимодействии перекиси водорода, образующейся в дыхательной цепи, с ионами Fe 2+ и Сu 2+ , которые присутствуют в митохондриальных мембранах, образуется гидроксид-радикал, который и повреждает мтДНК. Повреждение мтДНК приводит к неправильному синтезу компонентов дыхательной цепи, вследствие усиливается утечка супероксид-аниона. Супероксид-анионом кислорода молекулы ДНК могут повреждаться напрямую.

В результате действия активных форм кислорода (свободных радикалов) на молекулу ДНК возникают хромосомные аберрации, которые представляют собой нарушения структуры хромосомы. Подсчитано, что ДНК подвергается нападению свободных радикалов до 10000 раз в день. Именно поэтому, с повреждением структур ДНК свободными радикалами связывают в настоящее время такие заболевания, как рак, артрозы, инфаркт, ослабление иммунной системы и т.д.


В отличие от других органов легкие непосредственно подвергаются действию кислорода — инициатора окисления, а также оксидантов, содержащихся в загрязненном воздухе (озона, диоксидов азота, серы и т. д.). Ткань легких содержит в избытке ненасыщенные жирные кислоты, которые оказываются жертвами свободных радикалов. На легкие прямо воздействуют оксиданты, образующиеся при курении. Легкие подвергаются воздействию микроорганизмов, содержащихся в воздухе. Микроорганизмы активируют фагоцитирующие клетки, которые выделяют активные формы кислорода, запускающие процессы свободнорадикального окисления. Легкие особенно уязвимы для свободных радикалов, так как в них повышена возможность протекания свободно-радикальных реакций.

6. СВОБОДНЫЕ РАДИКАЛЫ И САХАРНЫЙ ДИАБЕТ

Экспериментально доказано, что свободные радикалы могут являться как первичными факторами, провоцирующими развитие сахарного диабета, так и вторичными факторами, усугубляющими течение диабета и вызывающими его осложнения.

Так, для моделирования картины диабета 1-го типа у животных используют химический препарат аллоксан. При его внутривенном введении наблюдается массовое возникновение свободных радикалов. Через 48-72 часов у животных наблюдается гибель бета-клеток и нарушения углеводного обмена, сравнимые с картиной сахарного диабета 1-го типа у людей.

В других экспериментальных исследованиях, чтобы воссоздать у животных картину диабета 2-го типа, у них из митохондрий поджелудочной железы удаляли белок фратаксин. Фратаксин нейтрализует свободные радикалы в митохондриях. При его удалении в поджелудочной железе подопытных животных наблюдалась массовая гибель бета-клеток и развивалась картина диабета 2-го типа.

ОКСИДАТИВНЫЙ СТРЕСС - КАК ОБЩЕЕ ПОНЯТИЕ

Итак, подведем итог. Чрезвычайная интенсивность синтеза свободных радикалов ведет к образованию вторичных радикалов с высокой реактивностью и они, в отличие от первичных радикалов, уже не выполняют физиологически необходимых функций. Вызываемые ими патогенные изменения называются — оксидативный стресс.

Вторичные радикалы повреждают третичную конфигурацию белков, что сопровождается падением активности многих ферментов и гормонов, нарушением сигнальных, регуляторных и транспортных функций, разрушением морфологических образований и даже гибелью клеток. В результате оксидативного стресса, захватывающего липиды, белки, НК, ДНК, нуклеотиды, — образуются гидроперекиси. Среди них наиболее активным компонентом окислительного стресса является гидроксильный радикал (H O *), который вызывает развитие цепной реакции окисления и, несмотря на очень короткий срок его жизни — 10(-9) сек, способен существенно повредить крупные органические молекулы.

Вторичные радикалы вызывают необратимые изменения ДНК, мутации генов, злокачественные перерождения клеток, образование аутоантигенов, искажают апоптоз, то есть лежат в основе старения и большой группы (более 60 болезней) воспалительных, онкологических, аутоиммунных, нервно-дегенеративных и других хронических заболеваний. Под действием ПОЛ повреждаются, часто вплоть до полного разрушения фосфолипидные мембраны клеток, этой основы защиты и большинства функций клетки; подавляются митоз, синтез ДНК и самовосстановление поврежденных ее участков.

БОРЬБА СО СВОБОДНЫМИ РАДИКАЛАМИ

Природа заложила в живом организме собственные средства защиты от избытка свободных радикалов и природная система достаточно хорошо работает. Однако через нее все же постоянно проскальзывают отдельные радикалы, которые не успели вступить во взаимодействие с антиокислительными ферментами. Тогда из одного свободного радикала образуется три новых и еще одна органическая перекись, которая тут же распадается на еще два радикала. Получается, что из одного радикала образуется три, из трех — 9, затем 27 и т.д. Образуется мощная свободно-радикальная лавина, которая циркулирует в организме, повреждая на своем пути все больше клеточных мембран.

После такой атаки клетка, конечно, может восстановиться, но может и вновь повреждаться налетевшей лавиной. Если радикалов много, и лавины большие, то получается, что частота повреждений клеток становится больше, чем скорость их восстановления. С этого момента все клетки организма находятся в непрерывно поврежденном состоянии, и степень этого повреждения постоянно растет.

Поэтому, когда уровень свободных радикалов возрастает (особенно при инфекционных заболеваниях и при длительном пребывании на солнце, во вредном производстве и т.п.), возрастает и потребность организма в дополнительных антиоксидантах, которые действуют как ловушки для свободных радикалов.

Если лавину окисления не остановить, то может погибнуть весь организм. Именно это и происходило бы со всеми живыми организмами в кислородной среде, если бы природа не позаботилась снабдить их мощной системой защиты — антиоксидантной системой. Отсюда и вытекает вывод: бороться со свободными радикалами нужно несколькими путями: с помощью препаратов - "ловушек", нейтрализующих уже имеющиеся свободные радикалы, а также внешних антиоксидантных средств, препятствующих образованию свободных радикалов.

АНТИОКСИДАНТЫ


Антиоксиданты — это молекулы, которые способны блокировать реакции свободнорадикального окисления, восстанавливая разрушенные соединения. Когда антиоксидант отдает свой электрон окислителю и прерывает его разрушительное шествие, он сам окисляется и становится неактивным. Для того чтобы вернуть его рабочее состояние, его надо снова восстановить. Поэтому антиоксиданты, как опытные оперативники, обычно работают парами или группами, в которых они могут поддержать окисленного товарища и быстро восстановить его. Например, витамин С восстанавливает витамин Е, а глютатион восстанавливает витамин С.

КАК РАБОТАЮТ АНТИОКСИДАНТЫ

И происходящие в клетке естественные процессы, и внешние факторы вроде выкуренной сигареты или солнечного ожога приводят к тому, что в организме образуется избыточное количество свободных радикалов.

Когда молекула теряет электрон (этот процесс называется окислением), она становится реакционно-способным свободным радикалом с электроном, у которого нет пары. Свободный радикал (СР) пытается украсть электрон у ближайшей молекулы, чтобы восстановить нарушенный баланс. Запущенный процесс может повлечь образование другого СР и вызвать цепную реакцию, которая способна повредить различные компоненты клетки, включая ДНК. Это, в свою очередь, чревато серьезными проблемами — от ослабления иммунной системы до развития рака.

Рис. 4. Молекула антиоксиданта способна нейтрализовать СР, отдав ему один из своих электронов и не требуя ничего взамен. В отличие от СР она остается стабильной, перераспределяя собственные электроны.

Весьма эффективные антиоксидантные кооперативы содержатся в растениях. Это растительные полифенолы или биофлавоноиды, которые сообща очень эффективно борются со свободными радикалами. Наиболее мощными антиоксидантными системами обладают растения, которые могут расти в суровых условиях, — облепиха, сосна, кедр, пихта и другие.

АНТИОКСИДАНТЫ ФЕРМЕНТАТИВНОЙ ПРИРОДЫ


Каждая клетка способна уничтожать избыток свободных радикалов. Для этого существуют специальные ферментные системы, представляющие внутреннюю часть антиоксидантной системы. Если она устраняет все возникшие радикалы — все в порядке, но если их возникает гораздо больше нормы, то часть из них остается ещё не обезвреженными. Поэтому важна также и внешняя часть антиоксидантной системы — антиоксиданты, получаемые с пищей. Следует отметить, что пробиотики являются универсальными пищевыми добавками, способствующими продуцированию как антиоксидантных ферментов, так и антиоксидантов неферментной природы - витамины, аминокислоты.

ФЕРМЕНТНЫЕ АНТИОКСИДАНТЫ

  • АНТИОКСИДАНТЫ — это биологически активные вещества (БАВ), блокирующие реакции СРО (свободно-радикального окисления) и восстанавливающие окисленные соединения. Антиоксиданты бывают ферментативной природы (ферменты, продуцируемые клетками организма, в т.ч. микроорганизмами) и неферментные.
  • ФЕРМЕНТЫ (или энзимы) — это как правило белковые молекулы или молекулы РНК (рибозимы) или их комплексы, которые способны многократно ускорять химические реакции, происходящие в живых системах.
  • АНТИОКСИДАНТНЫЕ ФЕРМЕНТЫ катализируют реакции, в результате которых токсичные свободные радикалы и перекиси превращаются в безвредные соединения. При этом сами ферменты выходят из реакции химически совершенно устойчивыми, т.е. не изменяясь.

Ферментные антиоксиданты - это ферменты, которые вырабатываются самим организмом (его клетками), а также его микробиомом (в частности, присутствующими в кишечнике пропионовокислыми бактериями).

Действие ферментов абсолютно точно зашифровано в их названии - ферменты или энзимы (от лат. fermentum, англ. ensimo — закваска и ζ?μη, zyme — дрожжи) — закваска, дрожжи, т.е. вещества играющие роль катализаторов.

Ферменты ускоряют химические реакции во многие тысячи или даже десятки тысяч раз. Они подсоединяются к участникам химических реакций, отдают им свою энергию, ускоряют эти реакции, а потом снова выходят из реакции химически совершенно не изменяясь.

Известными человеческими ферментами - антиоксидантами являются белки--катализаторы: Супероксиддисмутаза (СОД), каталаза и глутатионпероксидазы. Они катализируют реакции, в результате которых токсичные свободные радикалы и перекиси превращаются в безвредные соединения.

  • Супероксиддисмутаза (СОД) является одним из главных ферментов антиоксидантной системы. Супероксиддисмутаза катализирует реакцию взаимодействия двух супероксидных радикалов (O 2 -) друг с другом, превращая токсичный супероксидный радикал O 2 - в менее токсичную перекись водорода (H 2 O 2) и кислород (O 2): O 2 - + O 2 - + 2H + = > H 2 O 2 + O 2

Поскольку перекись водорода H 2 O 2 , также является радикалом и оказывает повреждающее действие, в клетке происходит ее постоянная инактивация ферментом каталазой

  • Каталаза катализирует расщепление перекиси водорода H 2 O 2 до молекул воды и кислорода и может разложить 44 000 молекул H 2 O 2 в секунду.
  • Глутатионпероксидазы катализируют восстановление пероксида водорода до воды и липидных гидропероксидов в соответствующие спирты с помощью глутатиона (гамма-глутамилцистеинилглицина, GSH). Сульфгидрильная группа GSH окисляется до дисульфидной формы, отдавая электроны пероксиду водорода или гидропероксиду липида..

Ферменты кишечных бактерий. Очень важную роль в организме играют антиокислительные ферменты некоторых, присутствующих в ЖКТ, бактерий. Так, супероксиддисмутаза (СОД) и каталаза , продуцируемые пропионовокислыми бактериями (ПКБ) образуют антиоксидантную пару, которая борется со свободными радикалами кислорода, не давая им возможности запустить процессы цепного окисления . Пероксидаза обезвреживает липидные перекиси, обрывая тем самым цепное перекисное окисление липидов.

Каталаза и СОД защищают клетки от экзогенных и эндогенных окислительных стрессов, нейтрализуя свободные кислородные радикалы. Ферментативные антиоксиданты супероксиддисмутаза (СОД), каталаза и пероксидаза, подуцируемые ПКБ и участвующие в нейтрализации свободных радикалов, составляют т.н. антиоксидантную ферментную систему микроорганизмов.


СОД, каталаза и пероксидазы обеспечивают более эффективную антиоксидантную защиту организма по сравнению с другими антиоксидантами.

Итак, каждая клетка человеческого организма обладает собственной ферментной антиоксидантной защитой.

Для примера предлагаем рассмотреть свойства глутатионпероксидазы:

Однако, если защита ослабевает, неплохо было бы иметь запас АОФ из других источников.

Подробнее об антиоксидантных ферментах микроорганизмов см.:

Но даже несмотря такую мощную антиоксидантную защиту, свободные радикалы всё же ещё могут оказывать достаточно разрушительное воздействие на биологические ткани и, в частности, на кожу. Причиной этого являются факторы, которые резко усиливают продукцию свободных радикалов, что и приводит к перегрузке антиоксидантной системы и окислительному стрессу (). Однако и их можно ослабить, если возвести в разряд системы использование современных антиокислительных средств и регулярно употреблять в пищу продукты, богатые противоокислительными соединениями, в т.ч. пробиотические продукты функционального питания на основе пропионовокислых и бифидобактерий с доказанной антиоксидантной и антимутагенной активностью.

Способность некоторых пробиотических бактерий к продукции антиокислительных ферментов, делает данные микроорганизмы самыми перспективными из всех средств борьбы со свободными радикалами, в т.ч. в плане снижения геннотоксического действия ультрафиолетовых лучей и радиации. А благодаря их антимутагенной активности, снижаются риски возникновения мутагенеза, который может быть спровоцирован свободными радикалами посредством разрушения ДНК. К тому же, многие пробиотические микроорганизмы являются продуцентами других антиоксидантных веществ - аминокислот (метионин, цистин), витаминов (ниацин (PP), С, K). О некоторых из них будет сказано ниже.

НЕФЕРМЕНТАТИВНЫЕ АНТИОКСИДАНТЫ, БИОФЛАВОНОИДЫ


Было отмечено, что помимо антиоксидантов - ферментов, существует ряд веществ иного происхождения, способных блокировать реакции свободно-радикального окисления и восстанавливающих окисленные соединения. Кроме того, для нормального синтеза антиокидантных ферментов, речь о которых шла выше, важно потреблять достаточное количество минералов и витаминов: марганец важен для синтеза супероксиддисмутазы в митохондриях, где продуцируется большая часть свободных радикалов, витамиин С необходим для синтеза каталазы, а производство глутатиона невозможно без пиридоксина (витамин В6), селена и серы.

Антиоксидантными свойствами в организме обладают токоферолы, каротиноиды, аскорбиновая кислота, антиокислительные ферменты, женские половые гормоны, коэнзим Q, тиоловые соединения (содержащие серу), белковые комплексы, витамин К и др. Серосодержащие аминокислоты метионин и цистин, продуцируемые пропионовокислыми бактериями, являются тоже антиокислителями. Например, аминокислота Цистин - мощный антиоксидант, в ходе метаболизма которого образуется серная кислота, связывающая токсичные металлы и разрушительные свободные радикалы. В некоторых отзывах о цистине подтверждается, что данная аминокислота в терапевтических дозах защищает от воздействия радиации и рентгеновских лучей. Вещество запускает очистительные процессы в организме при воздействии на него загрязненного воздуха, химикатов...

К неферментативным антиоксидантам можно отнести следующие вещества:

  1. жирорастворимые: А (каротиноиды ), Е (токоферолы), К, коэнзим Q10; флавоноиды (кверцетин, рутин, антоцианы, ресвератрол, гесперидин, катехины и др.)
  2. водорастворимые витамины: С, РР;
  3. другие соединения: аминокислоты цистин, пролин, метионин, глутатион, различне хелаты;
  4. микроэлемент селен.

Следует подчеркнуть, что в живых системах все вещества в определенной степени взаимодействуют между собой, оказывая друг на друга различное влияние. Так, для нормальной работы упомянутого выше антиоксидантного фермента глутатионпероксидазы необходим микроэлемент Селен , который участвует в его образовании, а глутатионперокидаза, в свою очередь, защищает клетки от токсического действия перекисей, тем самым сохраняя их жизнеспособность. Поэтому пища или пищевые добавки с селеном, в том числе селенсодержащие препараты пробиотики "Селенпропионикс" и "Селенбифивит", успешно усиливают антиоксидантную защиту организма.

И витамины также являются предшественниками молекул, играющих важную роль в окислительно-восстановительных реакциях в клетках. Например, ниацин (витамин В3 или PP) может способствовать антиоксидантному и метаболическому эффекту в качестве ферментного кофактора. Ниацин в организме человека превращается в никотинамид, который входит в состав коферментов некоторых дегидрогеназ: никотин-амид-аденин-динуклеотида (НАД ) и никотин-амид-аденин-динуклеотид-фосфата (НАДФ ). В данных молекулярных структурах никотинамид выступает в роли донора и акцептора электронов и участвует в жизненно важных окислительно-восстановительных реакциях. Ниацин участвует также в репарации ДНК, т.е. в исправлении ее химических повреждений и разрывов. Т.е. этот витамин задействован в восстановлении генетического ущерба (на уровне РНК и ДНК), нанесенного клеткам организма лекарствами, мутагенами, вирусами и др. физическимии и химическими агентами.

Антиоксиданты с успехом применяются при лечении целого ряда заболеваний. Самыми известными из антиоксидантов являются витамины С, Е, В, А. Они представляют собой антиоксиданты, вводимые извне, так называемые неферментные.

Антиоксиданты неферментного происхождения разделяются на жирорастворимые и водорастворимые. Водорастворимые антиоксиданты защищают ткани, жидкостные по своей природе, а жирорастворимые — ткани, основанные на липидах. В таблице перечислены самые известные неферментные антиоксиданты:

Таблица 6. Антиоксидантные свойства некоторых витаминов, минералов и биофлавоноидов

Наименование антиоксиданта

Функция антиоксиданта

Витамин А, каротиноиды

Является одним из важнейших липофильным антиоксидантом, реализующим свой потенциал в липидных мембранах клеток.

У лиц с низким потреблением каротина (менее 5 мг в день) риск заболеть раком повышается в 1,5-3 раза .

По последним данным, два каротиноида (лютеин и зеаксантин) защищают нас от дегенерации желтого пятна сетчатки ― возрастного изменения, приводящего к необратимой слепоте.

Витамин С

Нейтрализует свободные радикалы и восстанавливает израсходованный на это антиоксидантный потенциал витамина Е.

Хронический дефицит угнетает работу иммунной системы, ускоряет развитие атеросклероза, повышает онкологический риск.

Витамин Е

Один из важнейших жирорастворимых антиоксидантов, проявляющий свое действие в клеточной мембране. Особое строение витамина Е позволяет ему легко отдавать электрон свободным радикалам, восстанавливая их до стабильных продуктов.

При длительном хроническом дефиците витамина повышается риск развития злокачественных опухолей, атеросклероза, СС-заболеваний, катаракты, артритов, ускоряются процессы старения.

Марганец

Входит в состав марганец-зависимой супероксиддисмутазы, защищающей митохондрии (основные энергетические станции) клеток от окислительного стресса.

Медь и цинк

Образуют активный центр незаменимого антиоксидантного фермента - (Zn,Cu) - супероксиддисмутазы, играющей важную роль в прерывании свободнорадикальных каскадных реакций. Цинк входит в состав фермента, защищающего ДНК клеток от свободных радикалов.

Селен

Необходим для эффективной работы глутатионпероксидазы - одного из важнейших ферментов эндогенной антиоксидантной системы человека. Он входит в состав активного центра этого фермента.

Биофлавоноиды (кверцетин, рутин, антоцианы, ресвератрол

и др.)

Механизмы действия биофлавоноидов различны: они могут действовать как ловушка для образовавшихся свободных радикалов; подавлять образование свободных радикалов за счет непосредственного предотвращения протекания какого-либо процесса или реакции в организме (ингибирование ферментов, энзимов), способствуют выведению токсических веществ (особенно тяжелых металлов).

Защитные соединения с антиоксидантными свойствами располо жены в органеллах, внутриклеточных компонентах на всех важнейших уровнях защиты. В целом все эти факторы нарушают равновесие между так называемым оксидантным стрессом, вызываемым активными формами кислорода и азота, и естественной защитой организма.

Перечисленные выше соединения, так называемые антиоксиданты, не дают окисляться жизненно важным компонентам тела: белкам, жирам, ДНК, РНК, - за счет собственного окисления. К ним относятся водо- и жирорастворимые витамины, каротиноиды, многие микроэлементы, специфические ферменты, полифенолы, антоцианы, флавоноиды и др. Все эти соединения характерны для растений.

Источники активных форм кислорода

Антиоксидантная защита организма

Внутренние

Внешние

Витамины С, А, Е, В и др.

Митохондрии

Каротиноиды

Фагоциты

Радиация

Коэнзим Q10

Ксантиноксидаза

УФ-излучение

Селен, медь, цинк и др.

Пероксисомы

Загрязнение окр. среды

В составе ферментов (глутатионпероксидазы, СОД, каталазы)

Воспаление

Лекарства

Полифенолы

Реакции с Fe 2+ или Cu +

Алкоголь

Антоцианы

Метаболизм арахидоновой кислоты

Флавоноиды

Старение

Кислотные дожди

Глутатион

Растворители

Мочевая кислота

Рис. 5. "Весы жизни"

Очевидно, что для сохранения здоровья в организме необходимо равновесие между процессами окисления и восстановления, то есть между оксидантами и антиоксидантами (рис. 5). В эпоху глобального экологического кризиса наш организм вышел из зоны равновесия. Левая чашка весов постоянно перевешивает, и именно она определяет так называемый «оксидантный стресс».

или витамин С является наиболее известным водорастворимым антиоксидантом. В настоящее время все исследователи единодушны в том, что низкая концентрация витамина С в тканях — это фактор риска сердечнососудистых заболеваний. Аскорбиновая кислота уменьшает концентрацию «плохих» холестеринов и увеличивает концентрацию «хороших», снимает артериальные спазмы и аритмии, предотвращает образование тромбов.

Аскорбиновая кислота играет ведущую роль в метаболизме железа в организме, восстанавливая Fe 3+ в Fe 2+ . Организм человека усваивает только двухвалентное железо (Fe 2+), а трехвалентное железо не только не усваивается, но и приносит много вреда, провоцируя реакции перекисного окисления липидов. Витамин С усиливает действие витамина Е, который охотится за свободными радикалами в клеточных мембранах, в то время как сам витамин С атакует их в биологических жидкостях.

За 1 секунду витамин С ликвидирует 10 10 молекул активного гидроксила или 10 7 молекул супероксидного анион-радикала кислорода. Антиоксидантом аскорбиновая кислота является потому, что она активный восстановитель, обладающий способностью «ловить» свободные радикалы. Витамин С нейтрализует также окислители, поступающие с загрязненным воздухом (NO, свободные радикалы сигаретного дыма), редуцирует канцерогены. Наш организм не вырабатывает витамин С и не накапливает его и поэтому всецело зависит от его поступления извне.

Так или иначе, принцип антиоксидантного воздействия на организм указанных веществ одинаков. Теперь нам известно, что вещества "ловушки" свободных радикалов способны вступать в реакцию с ними и надёжно разрушать их, при этом не образуя новые источники для появления свободных радикалов. Ярчайшим представителем подобного класса "ловушек" являются живые "биофлавоноиды" в растениях, которые обладают исключительно естественной способностью связывать свободные радикалы.


Биофлавоноиды (флавоноиды) представляют собой нетоксические соединения растительного происхождения с выраженными антиоксидантными свойствами. Биофлавоноиды получили свое название от латинского слова flavus - желтый, так как первые флавоноиды, которые были выделены из растений, имели желтый цвет.

Спрашивается только: откуда взялись эти антиоксиданты в растениях? И ответ станет сразу ясен, если мы вспомним, в каких непростых природных условиях многим растениям приходилось существовать. За миллионы лет, смогли выжить и приспособиться только те из них, которые выработали собственную защиту от неблагоприятных условиях среды и прокисания. Не случайно, максимальное количество природных натуральных антиоксидантов наблюдается обычно в кожуре (!) и коре (!) растений и деревьев, а также в косточках (!), где хранится генетическая информация. Так что всё исключительно логично: растения защищаются от прокисания с помощью выработки антиоксидантов, а мы, употребляя эти растения в пищу, насыщаем антиокислителями свой организм и защищаем себя от "прокисания", старения и болезней.

Считается, что наиболее эффективные соединения - биофлавоноиды, которые лучше всего препятствуют разрушению и старению организма, находятся в тех составах, которые придают растениям их выраженную пигментацию или окраску. Именно по этой причине наиболее полезными оказываются те продукты, которые имеют наиболее тёмную окраску (черника, тёмный виноград, свёкла, фиолетовые капуста и баклажаны и т.п.). То есть, даже без химического анализа мы можем поедать самые полезные продукты (фрукты, овощи, ягоды и т.п.), отдавая предпочтение тем, что сильнее всего окрашены в тёмные тона.

Флавоноиды способны снижать даже уровень холестерина в организме, а также тенденцию красных кровяных телец слипаться и образовывать тромбы, как впрочем и многое другое. Например доказано, что биофлавоноиды эффективно помогают снижать гипертонию и устранять разного рода аллергии.

Данные вещества антиоксиданты настолько важны, что получили название - витамин Р. Т.е., кроме мощного антиоксидантного действия, биофлавоноиды обладают еще и так называемой P-витаминной активностью - они способны уменьшать проницаемость стенок кровеносных сосудов. Поэтому их раньше называли витамином P (от слова permeability - проницаемость). Это их свойство обусловлено способностью стимулировать выработку коллагена - основного компонента соединительной ткани. Именно этот витамин и содержится во многих растениях в очень приличных количествах. Несколько сотен граммов (100 - 500) некоторых продуктов могут содержать дозировку витамина Р, которым можно серьёзно лечить даже ряд заболеваний сердца, сосудов, глаз и т.п.

Термин «антиоксиданты» прочно вошел в лексикон маркетологов и приверженцев здорового образа жизни. Считается, что употребление этих веществ замедляет процесс старения и помогает справиться со многим заболеваниям. Рассмотрим, в чем же заключается их действие, а также выясним, в каких продуктах питания они содержатся.

Что такое антиоксиданты?

В человеческом организме ежесекундно протекают химические процессы с участием кислорода: под его воздействием поступающие с пищей жиры и углеводы постепенно расщепляются. В результате выделяется жизненно важная энергия, а вместе с ней и оксиданты (свободные радикалы) – молекулы с одним неспаренным электроном, которые необходимы организму в минимальном количестве для борьбы с инфекционными агентами и усвоения пищи.

Излишки радикалов нейтрализуются особыми ферментами. Но из-за неблагоприятных факторов (стрессов, болезней) оксидантов становится слишком много, и они атакуют здоровые клетки, разрушая их мембраны. Из-за этого нарушается функционирование всех органов и систем организма: возникают сердечно-сосудистые патологии, диабет, преждевременное старение, раковые опухоли и так далее.

Исправить ситуацию способны антиоксиданты – особые вещества, нейтрализующие действие радикалов путем «передачи» им недостающего электрона. С их помощью завершается цепочка окислительно-разрушительных реакций, и структура клеток восстанавливается.

Антиоксиданты содержатся во многих витаминах и продуктах питания, причем доказано, что из натуральных источников они усваиваются лучше чем из промышленно изготовленных витаминов. Тем не менее последние имеют свои преимущества. Потому поговорим о них.

Витамины с антиоксидантными свойствами

Самые известные вещества с антиоксидантным действием – это витамины С, А и Е, а также селен и биофлавоноиды. Рассмотрим антиоксидантные свойства витаминов и названных веществ.

Аскорбиновая кислота

Витамин С – самый мощный «противоокислитель», захватывающий свободные радикалы, находящиеся в межклеточном пространстве.

Он полезен для:

Кровеносной системы – поддерживает уровень гемоглобина и железа, снижает количество холестерина, укрепляет стенки сосудов;
костей – отвечает за их прочность;
кожи – участвует в синтезе коллагена;
иммунитета – повышает защитные функции.

Содержится в лимонах, лайме, клубнике, свежей зелени, болгарском перце, шпинате, брокколи, черемше, киви, калине, облепихе. Суточная медицинская доза витамина С – 50-60 мг.

Токоферол

Витамин Е – жирорастворимое соединение, нейтрализующее оксиданты, разрушающие клеточные мембраны.

Свойства:

Регулирует работу репродуктивной системы;
улучшает состояние кожи и ускоряет заживление ран;
отвечает за тонус мышц;
противостоит атеросклерозу и образованию тромбов.

Содержится в растительном масле первого отжима, злаках (особенно пророщенных), зеленых овощах, орехах (миндале, кешью, фундуке, арахисе), печени трески, кальмарах, лососе, яичном желтке, черносливе и кураге. Суточная доза – 8-10 МЕ.

Ретинол

Витамин А защищает мембраны клеток головного мозга от воздействия радикалов.

Снижает вероятность формирования раковых опухолей;
поддерживает остроту зрения;
улучшает работу иммунитета, особенно на местном уровне;
отвечает за восстановление эпителиального слоя кожи и слизистых оболочек;
участвует в синтезе некоторых гормонов;
необходим для сохранения эластичности стенок сосудов и кожи;
благотворно влияет на сердечно-сосудистую систему.

Содержится в оранжевых и желтых овощах – моркови, дыне, абрикосах, тыкве, а также в шпинате, брокколи, морской капусте, печени, сливочном масле, твороге, брынзе и жирной рыбе. Суточная доза – 3300 МЕ.

Флавоноиды

Флавоноиды – группа веществ, которые присутствуют в цветах, листьях и плодах растений и отвечают за их защиту от неблагоприятных факторов. К ним относится более 150 сходных по своей структуре соединений – рутин, кверцетин, катехин, аскорутин, цитрин и прочие.

Свойства:

Подавляют деятельность оксидантов;
укрепляют сосуды и борются с образованием склеротических бляшек;
помогают в усвоении витамина С;
останавливают рост злокачественных клеток;
снимают воспаление;
снижают выраженность аллергических реакций.

Источники – черника, зеленый чай, какао-бобы, яблоки, кожура винограда, малина, цедра цитрусовых, гранаты.

Селен

Селен является частью многих ферментов, в том числе глутатионпероксидазы, нейтрализующей радикалы.

Он полезен для:

Сердечно-сосудистой системы – при его нехватке ослабевает сердечная мышца;
эндокринной системы – без него йод не усваивается клетками щитовидной железы;
опорно-двигательного аппарата – для профилактики остеопороза.

Источники – чеснок, морепродукты, субпродукты, мясо, грибы, злаки, семечки подсолнечника, морская капуста.

Продукты-антиоксиданты

Все продукты, в которых присутствуют вышеперечисленные соединения, обладают антиоксидантными свойствами. Но есть некоторые дары природы, характеризующиеся повышенной способностью «гасить» свободные радикалы. Рассмотрим антиоксидантные свойства продуктов, которые это «умеют».

Красная фасоль

Состав – витамин В6, клетчатка, каротин, калий, медь, сера, железо, лизин, аргинин и тирозин.

Снижает риск возникновения онкологии;
очищает организм от токсинов;
стабилизирует уровень сахара в крови;
защищает от сердечных заболеваний.

Способ употребления – в отварном виде. Дневная норма – не более 100 г.

Черника

Состав – витамины А, С, Е, К и группы В, флавоноиды, кальций, магний, фосфор, цинк, железо, марганец и селен.

Помогает устранить офтальмологические проблемы – конъюнктивит, «куриную слепоту»;
снимает воспаление при респираторных и желудочно-кишечных заболеваниях;
ускоряет выздоровление при кожных поражениях;
нормализует давление;
снижает уровень глюкозы в крови.

Способ употребления – в свежем виде. Дневная норма – 150-200 г.

Клюква

Состав – витамины С, РР, Е, К 1, В1, В2, В5, В6, органические кислоты (яблочная, урсоловая, янтарная), пектин, флавоноиды (катехины, антоцианы), калий, марганец, хром, йод и цинк.

Укрепляет иммунитет;
положительно влияет на состояние мочевыводящей системы;
обладает антибактериальным действием;
препятствует образованию тромбов и холестериновых бляшек в сосудах;
нормализует работу ЖКТ.

Способ употребления – в свежем виде, в качестве питья (морс, чай). Дневная норма – 150 г.

Чернослив

Состав – пектин, клетчатка, яблочная кислота, витамины С, РР, А, В1, В2, фосфор, железо, калий, дубильные вещества, флавоноиды.

Повышает уровень гемоглобина в крови;
нормализует перистальтику кишечника;
обладает обеззараживающим и противотоксическим действием;
имеет желче- и мочегонные свойства;
положительно влияет на состояние сосудов и сердечной мышцы.

Способ употребления – в сушеном виде, в составе термически обработанных блюд. Дневная норма – 5-6 плодов.

Малина

Состав – витамины С, В9, В3, РР, Е, кальций, фосфор, магний, органические кислоты, антоцианы, полифенольные соединения.

Обладает жаропонижающим эффектом;
ускоряет выздоровление при респираторных заболеваниях;
останавливает кровотечение;
выводит токсины;
нормализует состояние сердечно-сосудистой системы, борясь с атеросклерозом, гипертонией и малокровием;
улучшает внешний вид кожи;
положительно влияет на женскую репродуктивную систему;
снимает нервное напряжение, воспаление и боль.

Способ употребления – в сыром виде. Дневная норма – 3 столовых ложки.

Другие ценные продукты с выраженным антиоксидантным действием – красный виноград, краснокочанная капуста, брокколи, свекла, яблоки, черноплодная рябина, помидоры, красное вино и коньяк (в умеренных количествах), зеленый чай, петрушка, шпинат, а также любые фрукты и овощи с яркой окраской. Наибольшее количество ценных веществ находится в кожуре и косточках плодов.

Сложно переоценить ценность антиоксидантов для человека. Нейтрализуя свободные радикалы, они помогают улучшить самочувствие и здоровье в целом. Конечно, перегибать «палку» не стоит. Не нужно потреблять антиоксиданты в виде повышенного количества витаминов или килограммов плодов. В наш организм должны поступать все питательные вещества, потому кушать нужно все, с учетом разумного подхода. Не забывайте, что в малых количествах все является «лекарством», а в больших «ядом».



mob_info