Теплообмен человека с окружающей средой. Способы осуществления терморегуляции организма человека

13. ТЕПЛООТДАЧА ЧЕЛОВЕКА

Теплоотдача - это теплообмен между поверхностью тела человека и окружающей средой. В сложном процессе сохранения теплового баланса организма регуляция теплоотдачи имеет большое значение. Применительно к физиологии теплообмена теплоотдача рассматривается как переход теплоты, освобождаемой в процессах жизнедеятельности, из организма в окружающую" среду. Теплоотдача осуществляется в основном излучением, конвекцией, кондукцией, испарением. В условиях теплового комфорта и охлаждения наибольшую долю занимают потери тепла радиацией и конвекцией (73-88% общих теплопотерь) {1.5, 1.6}. В условиях, вызывающих перегревание организма, преобладает теплоотдача испарением.

Радиационный теплообмен. В любых условиях жизнедеятельности человека между ним и окружающими телами происходит теплообмен путем инфракрасного излучения (радиационный теплообмен). Человек в процессе своей жизнедеятельности часто подвергается нагревающему воздействию инфракрасных излучений с разными спектральными характеристиками: от солнца, нагретой поверхности земли, зданий, отопительных приборов, и т. д. В производственной деятельности с радиационным нагреванием человек сталкивается, например, в горячих цехах металлургической, стекольной, пищевой промышленности и др.

Излучением человек отдает тепло в случаях, когда температура ограждений, окружающих человека, ниже температуры поверхности тела. В окружающей человека среде часто встречаются поверхности, имеющие температуру значительно ниже температуры тела (холодные стены, застекленные поверхности). При этом потери тепла излучением могут быть причиной местного или общего охлаждения человека. Радиационному охлаждению подвергаются строительные рабочие, рабочие, занятые на транспорте, обслуживающие холодильники и др.

Теплоотдача излучением в комфортных метеорологических, условиях составляет 43,8-59,1% общих теплопотерь. При наличии в помещении ограждений с температурой более низкой, чем температура воздуха, удельный вес теплопотерь человека излучением возрастает и может достигать 71%. Этот способ охлаждения и нагревания оказывает более глубокое воздействие на> организм, чем конвекционный (1.5J. Передача тепла излучением* пропорциональна разности четвертых степеней абсолютных температур поверхностей тела человека и окружающих предметов. При небольшой разности температур, что практически наблюдается в реальных условиях жизнедеятельности человека, уравнение для определения потерь тепла радиацией (Sрад, Вт, можно» записать так:

где а рад - коэффициент излучения, Вт/(м2°С); Spaд - площадь поверхности, тела человека, участвующей в радиационном теплообмене, м2; t1 - температура поверхности тела (одежды) человека, °С; t2 - температура поверхности окружающих предметов, °С.

Коэффициент излучения а рад при известных значениях t1 и t2 может быть определен по табл. 1.3.

Поверхность тела человека, участвующая в радиационном Теплообмене, меньше всей поверхности тела, так как некоторые части тела взаимно облучаются и не принимают участия в обмене. Поверхность тела, участвующая в обмене тепла, может составлять 71-95% всей поверхности тела человека. Для людей, находящихся в положении стоя или сидя, коэффициент эффективности излучения с поверхности тела составляет 0,71; в процессе движения человека он может увеличиваться до 0,95.

Потери тепла радиацией с поверхности тела одетого человека Qрад, Вт, могут быть определены также по уравнению

Конвекционный теплообмен. Передача тепла конвекцией осуществляется с поверхности тела человека (или одежды) движущемуся вокруг него (нее) воздуху. Различают конвекционный теплообмен свободный (обусловленный разностью температур поверхности тела и воздуха) и принудительный (под влиянием движения воздуха). По отношению к общим теплопотерям в условиях теплового комфорта теплоотдача конвекцией составляет 20-30% . Существенно возрастают потери тепла конвекцией в условиях ветра.

С использованием суммарного значения коэффициента теплоотдачи (а рад.конв) могут быть определены значения радиационно-конвективных теплопотерь (Орад.конв) по уравнению

Орад.конв = Орад.конв (tод-tв).

Кондукционный теплообмен. Теплоотдача от поверхности тела человека к соприкасающимся с ним твердым предметам осуществляется проведением (кондукцией). Потери тепла кондукцией в соответствии с законом Фурье могут быть определены по уравнению

Как видно из уравнения, отдача тепла кондукцией тем больше, чем ниже температура предмета, с которым соприкасается человек, чем больше поверхность соприкосновения и меньше толщина пакета материалов одежды.

В обычных условиях удельный вес потерь тепла кондукцией невелик, так как коэффициент теплопроводности неподвижного воздуха незначителен. В этом случае человек теряет тепло кондукцией лишь с поверхности стоп, площадь которых составляет 3% площади поверхности тела. Но иногда (в кабинах сельскохозяйственных машин, башенных кранов, экскаваторов и т. д.) площадь соприкосновения с холодными стенами может быть довольно большой. Кроме того, помимо размера контактирующей поверхности имеет значение и подвергающийся охлаждению участок тела (стопы, поясницы, плеч и т. д.).

Теплоотдача испарением. Важным способом теплоотдачи, особенно при высокой температуре воздуха и выполнении человеком физической работы, является испарение диффузионной влаги и пота. В условиях теплового комфорта и охлаждения человек, находящийся в состоянии относительного физического покоя, теряет влагу путем диффузии (неощутимой перспирации) с поверхности кожи и верхних дыхательных путей. За счет этого человек отдает в окружающую среду 23-27% общего тепла, при этом 1/3 потерь приходится на долю тепла испарением с верхних дыхательных путей и 2/3 - с поверхности кожи. На влагопотери путем диффузии оказывает влияние давлёние водяных паров в воздухе, окружающем человека. Поскольку в земных условиях изменение давления водяных паров невелико, влагопотери вследствие испарения диффузионной влаги принято считать относительно постоянными (30-60 г/ч). Несколько колеблются они лишь в зависимости от кровоснабжения кожи.

Потери тепла путем испарения диффузионной влаги с поверхности кожи Qисп.д, Вт, могут быть определены по уравнению

Теплоотдача при дыхании. Потери тепла вследствие нагревания вдыхаемого воздуха составляют небольшую долю по сравнению с другими видами потерь тепла, однако с увеличением энерготрат и со снижением температуры воздуха теплопотери этого вида увеличиваются.

Потери тепла вследствие нагревания вдыхаемого воздуха Qдых.н, Вт, могут быть определены по уравнению

Qдых.н=0,00 12Qэ.t (34-tв),

где 34 - температура выдыхаемого воздуха, °С (в комфортных условиях) .

В заключение следует отметить, что приведенные выше уравнения для расчета составляющих теплового баланса позволяют лишь ориентировочно оценить теплообмен человека с окружающей средой. Существует также ряд уравнений (эмпирических и аналитических), предложенных разными авторами и позволяющих определить необходимую для расчета теплового сопротивления одежды величину радиационно-конвективных теплопотерь (фрэд конв).

В" связи с этим в исследованиях наряду с расчетными применяются экспериментальные методы оценки теплообмена организма. К ним относятся методы определения общих влагопотерь человека и потерь влаги испарением путем взвешивания раздетого b одетого человека, а также определения радиационно-конвективных теплопотерь с помощью тепломерных датчиков, размещаемых на поверхности тела.

Помимо прямых методов оценки теплообмена человека используются косвенные, отражающие влияние на организм разницы между теплоотдачей и теплопродукцией в единицу времени в конкретных условиях жизнедеятельности. Это соотношение определяет тепловое состояние человека, сохранение которого на оптимальном или допустимом уровне является одной из главных функций одежды. В связи с этим показатели и критерии теплового состояния человека служат физиологической основой как проектирования одежды, так и ее оценки.

СПИСОК ЛИТЕРАТУРЫ

1 1. Иванов К. П. Основные принципы регуляции температурного пзмео-стаза/В кн. Физиология терморегуляции. Л., 1984. С. 113-137.

1.2 Иванов К. П. Регуляция температурного гомеостаза у животных и человека. Ашхабад, 1982.

1 3 Беркович Е. М. Энергетический обмен в норме и патологии. М., 1964.

1.4. Fanger Р. О. Thermal Comfort. Copenhagen, 1970.

K5. Малышева A. E. Гигиенические вопросы радиационного теплообмена человека с окружающей средой. М., 1963.

1 6. Колесников П. А. Теплозащитные свойства одежды. М., 1965

1 7. Витте Н. К- Тепловой обмен человека и его гигиеническое значение. Киев, 1956

Теплообразование определяется интенсивностью обмена веществ.

Регуляция теплообразования путём увеличения или уменьшения обмена веществ называется химической терморегуляцией. Выработанное организмом тепло постоянно отдаётся в окружающую среду. Если бы отдача тепла не происходила, организм погиб бы от перегревания.

Регуляция теплоотдачи путем изменения физиологических функций, осуществляющих её, называется физической терморегуляцией.

Наибольшее количество тепла образуется в органах с интенсивным обменом веществ - в скелетной мускулатуре, в железах, в печени и почках.

На долю мышц приходится 65-75% теплообразования, а при интенсивной работе даже 90%, остальная доля тепла образуется в железистых органах, главным образом в печени.

При повышении температуры окружающей среды теплообразование уменьшается, при понижении температуры - увеличивается. Следовательно, между температурой внешней среды и теплообразованием существуют обратно пропорциональные отношения. Летом теплообразование понижается, зимой увеличивается. Но при повышении температуры среды больше 35 о С происходит нарушение терморегуляции (зона перегревания), обмен веществ и температура тела повышаются. Эта температура называется критической. Точно так же при охлаждении существует критическая температура внешней среды, ниже которой теплопроизводство начинает понижаться.

При температуре среды 15-25 0 С теплообразование в покое в одежде находится на одном уровне и уравновешивается теплоотдачей (зона безразличия).

В нормальных условиях температура тела относительно постоянна. За среднюю температуру тела принимается температура в подмышечной впадине, температура равна 36,5-37 о С.

Когда для поддержания постоянства температуры тела требуется дополнительное тепло, оно может быть выбрано следующими способами:

  • - за счет произвольной активности локомоторного аппарата;
  • - за счёт непроизвольной тонической или ритмической мышечной активности: дрожь, вызванная холодом (тоническую активность можно обнаружить методом электромиографии);
  • - за счёт ускорения обменных процессов, не связанных с сокращением мышц; эта форма выработки тепла называется недрожательным термогенезом (у детей).

У взрослого человека дрожь и усиленные движения, которые он делает для того, чтобы согреться - наиболее важный механизм термогенеза.

Несколько повышается выработка тепла и при “ гусиной коже” - сокращении мышц волосяных мешочков.

Ходьба увеличивает теплопроизводство почти в 2 раза, а быстрый бег - в 4-5 раз, температура тела может повыситься на несколько десятых градуса. При продолжительной интенсивной работе при температуре внешней среды выше 25 0 С температура тела возрастает на 1-1.5 0 С, что вызывает изменения и нарушение жизнедеятельности организма. Во время мышечной работы при высокой температуре внешней среды температура тела повышается более 39 0 С, может наступить тепловой удар.

Теплоотдача

Организм в покое непрерывно теряет тепло:

  • - теплоизлучением или отдачей тепла кожей окружающему воздуху;
  • - теплопроведением или непосредственной отдачей тепла тем предметам, которые соприкасаются с кожей;
  • - испарением воды с поверхности кожи и лёгких.

В условиях покоя 70-80% тепла отдаётся в окружающую среду кожей теплоизлучением и теплопроведением, около 20% испарением воды с поверхности кожи (потоотделением) и лёгких. Отдача тепла нагреванием выдыхаемого воздуха, мочой и калом ничтожна и составляет 1.5 - 3% общей теплоотдачи. При мышечной работе резко возрастает отдача тепла испарением (потоотделением) доходя до 90% всего суточного теплообразования.

Теплоотдача теплоизлучением и теплопроведением зависит от разности температур кожи и окружающей среды. Чем выше температура кожи, тем больше теплоотдача указанными путями. А температура кожи зависит от притока к ней крови. При повышении температуры окружающей среды артериолы и капилляры кожи расширяются, кожа краснеет, количество протекающей через неё крови увеличивается, температура кожи повышается, и теплоотдача теплоизлучением и теплопроведением возрастает.

Увеличение количества крови, протекающей через кожу, происходит и за счёт примешивания депонированной крови из печени, селезёнки и из капилляров самой кожи.

Величина теплоотдачи при высоких температурах окружающей среды меньше, чем при низких. Когда температура кожи сравнивается с температурой окружающей среды, теплоотдача прекращается. При дальнейшем повышении температуры окружающей среды кожа не только теряет тепло, но сама нагревается. В этом случае теплоотдача теплоизлучением и теплопроведением отсутствует и сохраняется только теплоотдача испарением.

На холоде артериолы и капилляры кожи суживаются, кожа становится бледной, количество протекающей через неё крови уменьшается, температура кожи понижается, разница температур кожи и окружающей среды сглаживается, и теплоотдача уменьшается.

Человек уменьшает теплоотдачу искусственными покровами (бельём, одеждой). Чем больше воздуха в этих покровах, тем легче сохраняется тепло.

Регуляция теплоотдачи испарением воды играет большую роль, особенно при мышечной работе и значительном повышении температуры окружающей среды. При испарении 1 дм 3 (1 л) воды с поверхности кожи и слизистых оболочек телом теряется 600 ккал. При средней температуре окружающей среды взрослый человек ежесуточно теряет испарением с кожи 400 -520 ккал.

Потеря воды кожей происходит за счёт проникновения воды из глубоких тканей на поверхность кожи и главным образом за счет функционирования потовых желез.

Большие потери пота сопровождаются потерями больших количеств минеральных солей, только NaCl в поту 0,3 - 0,6%. При потере 5-10 л пота теряется 30 -40 г поваренной соли. Поэтому если возникшая при обильных потоотделениях жажда удовлетворяется водой, могут возникнуть тяжелые расстройства (судороги и т.д.). При обильном длительном потоотделении рекомендуется пить соответственно минеральную воду или воду, содержащую 0,5 -0,6 % NaCl.

Испарение воды постоянно происходит и с поверхности лёгких. Выдыхаемый воздух насыщен водяными парами на 95-98 % и поэтому, чем суше вдыхаемый воздух, тем больше тепла отдаётся испарением с лёгких. В обычных условиях лёгкими ежесуточно испаряется 300 - 400 мл (180 -240 ккал) воды. При высокой температуре дыхание учащается, на холоде замедляется. Когда температура воздуха достигает температуры тела, испарение с поверхности кожи и лёгких становится единственным путём теплоотдачи. В этих условиях в покое испаряется более 100 мл пота в час, что позволяет отдать около 60 ккал в час.

Испарение воды с поверхности кожи и лёгких зависит от относительной влажности воздуха. Испарение прекращается в воздухе, насыщенном водяными парами, поэтому пребывание во влажном горячем воздухе, как, например, бане, тяжело переносится. В сыром воздухе даже при сравнительно невысокой температуре (при 30 0 С) человек чувствует себя плохо. Кожаная и резиновая одежда непроницаема для воздуха, испарения нет, пот накапливается под одеждой. При высокой температуре воздуха и мышечной работе в такой одежде температура тела повышается. Перегревание человека в атмосфере, насыщенной водяными парами, особенно опасно, так как лишает возможности освобождаться от избытка тепла и испарением. В сухом воздухе человек сравнительно легко переносит значительно более высокую температуру, чем во влажном.

Для увеличения теплоотдачи теплоизлучением, теплопроведением и испарением большое значение имеет движение воздуха.

Увеличение скорости движения воздуха увеличивает теплоотдачу. На сквозняке и на ветру резко увеличивается потеря тепла. Но если окружающий воздух имеет высокую температуру и насыщен водяными парами, то движение воздуха не охлаждает.

И так, физическая терморегуляция обеспечивается:

  • 1) сердечно-сосудистой системой, которая определяет приток и отток крови в кровеносных сосудах кожи, а следовательно, количество тепла отдаваемого кожей в окружающую среду;
  • 2) системой органов дыхания, т.е. изменениями вентиляции лёгких;
  • 3) изменением функций потовых желез.

Регуляция теплоотдачи проводится двумя путями:

Существенное значение имеет адаптация к неблагоприятным условиям.

Изменение функций сердечно-сосудистой системы, дыхания и потовых желез рефлекторно регулируется: раздражением внешних органов чувств и особенно раздражением рецепторов кожи при изменении температуры внешней среды и раздражением нервных окончаний внутренних органов при колебаниях температуры внутри организма. Физиологические механизмы физической терморегуляции осуществляются большими полушариями, промежуточным, продолговатым и спинным мозгом.

Нарушение терморегуляции

Повышение температуры тела выше нормального уровня при нарушении терморегуляции называется лихорадкой. При лихорадке обмен веществ увеличивается на 50 - 100% и более. Особенно увеличивается распад белков. В крови накапливаются продукты белкового распада, устанавливается отрицательный азотистый баланс. При лихорадке окисление белков даёт около 30% теплообразования. Повышается также углеводный и жировой обмен, что ведёт к истощению организма. Накапливается большое количество продуктов промежуточного обмена веществ. Нарушаются физиологические процессы. Учащённое сердцебиение повышает кровяное давление, учащается дыхание, нарушается психика (бред, галлюцинации), что обусловлено расстройством нервной системы. При температуре 40 - 41 0 С начинается бред, при температуре 43 0 С наступает смерть, в единичных случаях при температуре равной 45 0 С.

При охлаждении тела также нарушаются физиологические процессы. При длительном пребывании на холоде после ощущения холода и дрожи появляется ощущение тепла, вследствие притока крови к коже, затем апатия и нарушение функций мозга. (При охлаждении жизнедеятельность, так как снижается обмен веществ в организме и потребность тканей в кислороде).

У человека смерть, как правило, наступает при температуре ниже 32-33 0 С, а при изменении функций нервной системы лекарственными препаратами - ниже 24 0 С. В единичных случаях людям удалось сохранить жизнь при падении температуры до 22,5 0 С.

Продолжительная адаптация к условиям окружающей среды.

Регуляторные механизмы - термогенез, сосудодвигательные реакции, потоотделение - включаются в течение секунд или минут после наступления температурного стресса. Кроме них существуют другие механизмы, обеспечивающие продолжительную адаптацию к климатическим изменениям в окружающей среде.

Такие процессы называются - физиологической адаптацией или акклиматизацией. Основаны они на модификациях органов и функциональных систем, которые развиваются только под влиянием продолжительных (в течение дней, недель и месяцев) постоянных или повторяющихся температурных стрессов.

Тепловая адаптация

Способность людей адаптироваться к теплу играет решающую роль для выживания в условиях тропиков и пустыни, а также для выполнения тяжёлой работы при высокой температуре на производстве.

Наиболее важный сдвиг - это изменение интенсивности потоотделения, которая возрастает в два раза и составляет 1-2 л/ч. Кроме этого, выделение пота начинается при более низкой средней кожной и внутренней температуры, что служит защитой от чрезмерного учащения сердцебиения и увеличения периферического кровотока, т. е. от теплового удара.

Адаптация связана также со значительным уменьшением содержания ионов в поту (нет шока от потери ионов), увеличением объёма плазмы и содержания в ней белков. У жителей тропиков интенсивность реакции не столь высока, чтобы вызывать потоотделение. Температурный порог сдвинут в сторону более высокой температуры тела, в результате они меньше потеют при ежедневной тепловой нагрузке.

Холодовая адаптация

Многие животные адаптируются к холоду очень просто - благодаря отрастанию меха у них усиливается термоизоляция. У мелких животных развиваются недрожательный термогенез и бурая жировая ткань.

У человека “поведенческая адаптация” - использования одежды и тёплых жилищ. Также развивается толерантная (холодовая) адаптация. Температурный порог дрожи и кривые метаболистических терморегуляторных реакций смещаются в сторону более низких значений температур, возникает умеренная гипотермия. (Аборигены Австралии проводят ночь почти раздетыми при температуре близкой к нулю не испытывая дрожи. Подобная способность хорошо развита у корейских и японских искателей жемчуга, ныряющих на глубину по несколько часов в день при температуре воды около 10 0 С.)

Между человеком и окружающей его средой постоянно происходит теплообмен. Факторы окружающей среды воздействуют на организм комплексно, и в зависимости от их конкретных значений вегетативные центры (полосатое тело, серый бугор промежуточного мозга) и ретикулярная формация, взаимодействуя с корой головного мозга и посылая по симпатическим волокнам импульсы к мышцам, обеспечивают оптимальное соотношение процессов теплообразования и теплоотдачи.

Терморегуляцией организма называется совокупность физиологических и химических процессов, направленных на поддержание температуры тела в определенных пределах (36,1...37,2 °С). Перегрев тела или его переохлаждение приводит к опасным нарушениям жизненных функций, а в некоторых случаях — к заболеваниям. Терморегуляция обеспечивается изменением двух составляющих теплообмен процессов — теплопродукции и теплоотдачи. На тепловой баланс организма существенно влияет теплоотдача, как наиболее управляемая и изменчивая.

Теплота вырабатывается всем организмом, но более всего поперечнополосатыми мышцами и печенью. Теплообразование организма человека, одетого в домашнюю одежду и находящегося в состоянии относительного покоя при температуре воздуха 15...25°С, сохраняется приблизительно на одном и том же уровне. С понижением температуры оно увеличивается, а при ее повышении с 25 до 35 °С несколько уменьшается. При температуре более 40 °С выработка теплоты начинает увеличиваться. Эти данные свидетельствуют о том, что регуляция производства теплоты в организме главным образом происходит при пониженных температурах окружающей среды.

Теплопродукция возрастает при выполнении физической работы, причем тем больше, чем тяжелее работа. Количество вырабатываемой теплоты зависит также от возраста и состояния здоровья человека. Усредненные значения теплопродукции взрослого человека в зависимости от температуры окружающего воздуха и тяжести выполняемой работы приведены в таблице 14.3.

14.3. Теплопродукция человека в зависимости от температуры воздуха и тяжести выполняемой работы

Температура воздуха, "С

Теплопродукция, Дж/с

Температура воздуха, °С

Теплопродукция, Дж/с

Состояние покоя

Работа средней тяжести

Легкая работа

Тяжелая и очень тяжелая работа

Различают три вида теплоотдачи организма человека:

излучение (в виде инфракрасных лучей, испускаемых поверхностью тела в направлении предметов с меньшей температурой);

конвекция (нагревание омывающего поверхность тела воздуха);

испарение влаги с поверхности кожи, слизистых оболочек верхних дыхательных путей и легких.

Процентное соотношение между этими видами теплоотдачи человека, находящегося в нормальных условиях в состоянии покоя, выражается следующими цифрами: 45/30/25. Однако указанное соотношение может изменяться в зависимости от конкретных значений параметров микроклимата и тяжести выполняемой работы.

Теплоотдача излучением происходит только в том случае, когда температура окружающих предметов ниже температуры открытых участков кожи (32. ..34, 5 °С) или наружных слоев одежды (27. ..28 °С для легко одетого человека и приблизительно 24 °С для человека в зимней одежде). Основная часть излучения относится к инфракрасному диапазону с длиной волны (4. ..50) * 10-6м. При этом теряемое организмом в единицу времени количество теплоты, Дж/с (1 Дж/с = 1 Вт),

Pp = Sδ(Tч4 - То4),

где S— площадь поверхности тела человека, определяемая по графику (рис. 14.1), м2. Если масса и рост человека неизвестны, то принимают S= 1,5м2; δ — приведенный коэффициент излучения, Вт/(м2*К4): для хлопчатобумажной ткани 5 = 4,2*10-8, для шерсти и шелка δ = 4,3*10 , для кожных покровов человека δ = 5,1*10-8; Тч — температура поверхности тела человека: для раздетого человека 306 К (это соответствует 33 °С); Тo — температура окружающей среды, К.

Рис. 14.1. График для определения площади поверхности тела человека в зависимости от его массы и роста


Теплоотдача конвекцией также происходит в случае, если температура поверхности кожи или верхних слоев одежды выше температуры омывающего их воздуха. При отсутствии ветра прилегающий к поверхности кожи раздетого человека слой воздуха толщиной 4...8 мм нагревается за счет его теплопроводности. Более отдаленные слои нагреваются вследствие естественного движения воздуха или принудительного побуждения. С увеличением скорости движения воздуха толщина окружающего человека пограничного слоя уменьшается до 1 мм, а теплоотдача поверхности тела возрастает в несколько раз. Потери теплоты конвекцией через дыхательные пути меньше, чем от кожного покрова, и происходят в тех случаях, когда температура вдыхаемого воздуха ниже температуры тела. Теплоотдача конвекцией повышается с ростом барометрического давления.

Приближенно потери теплоты в единицу времени конвекцией, Дж/с, можно определить по формуле

Pк1 = 7(0,5 + √v)S(Tч - То)

Рк2 = 8,4(0,273 + √v)S(Tч - То)

где v — скорость движения воздуха, м/с.

Первую формулу используют при скорости движения воздуха v ≤ 0,6 м/с, вторую — при v > 0,6 м/с.

Испарение — это теплоотдача при повышенной температуре воздуха, когда указанные ранее способы теплоотдачи затруднены или невозможны. В обычных условиях на большей части поверхности тела человека происходит неощутимое потоотделение, возникающее в результате диффузии воды без активного участия потовых желез. Исключение составляют поверхности ладоней, подошв и подмышечных впадин (составляющие примерно 10 % поверхности тела), на которых пот выделяется непрерывно.

В результате испарения организм в сутки теряет в среднем около 0,6 л воды. Так как на испарение 1 г воды затрачивается приблизительно 2,5 кДж теплоты, то потери ее за сутки составят приблизительно 1500кДж. С увеличением температуры воздуха и степени тяжести работы за счет более активного проникновения жидкости через стенки оплетающих потовые железы артериальных сосудов и нервной регуляции потоотделение усиливается, достигая за смену 5 л, а в некоторых случаях 10... 12 л. Отдача теплоты также возрастает.

При слишком интенсивном выделении пот не всегда успевает испариться и может выделяться в виде капель. В этом случае влажный слой на коже препятствует теплоотдаче, приводя в дальнейшем к перегреванию организма. Кроме влаги с потом человек теряет большое количество солей (в 1 л пота содержится 2,5...2,6 г хлорида натрия) и водорастворимых витаминов (С, BI, 62), что приводит к сгущению крови и ухудшению работы сердца. Следует отметить, что при потере количества воды, равного 1 % общей массы тела, у человека возникает чувство сильной жажды; утрата 5 % воды приводит к потере сознания, 10% — к смерти.

Количество выделяемого пота зависит и от индивидуальных особенностей организма, а также от степени его приспособляемости к данным климатическим условиям. На интенсивность испарения влаги влияют температура и скорость движения воздуха.

Через дыхательные пути испаряется около 300...350 г влаги в сутки, что приводит к потере 750...875 кДж теплоты.

Общие потери теплоты испарением в единицу времени, Дж/с, можно приближенно определить по формуле

Ри = 0,6547q(1 + kл), где q — интенсивность выделения пота, г/ч, определяемая взвешиванием человека; kл — коэффициент пересчета теплоотдачи через легкие, зависящий от температуры окружающего воздуха: при О "С kл = 0,43, при 18 °С — 0,3, при 28 °С — 0,23, при 35 °С - 0,035 и при 45°С kл = 0,015.

Жизнедеятельность человека сопровождается непрерывным выделением теплоты в окружающую среду. Ее количество зависит от степени физического напряжения и составляет от 85 (в состоянии покоя) до 500 Вт (при тяжелой работе). Чтобы физиологические процессы в организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую среду, Нарушение теплового баланса может привести к перегреву либо к переохлаждению организма и как следствие к потере трудоспособности, быстрому утомлению, потере сознания и тепловой смерти.

Одним из важных интегральных показателей теплового состояния организма является средняя температура тела около 36,5 «С. Она зависит от степени нарушения теплового баланса и уровня энергозатрат при выполнении физической работы. При выполнении работы средней тяжести и тяжелой при высокой температуре воздуха она может повышаться от нескольких десятых градуса до 1…2°С. Наивысшая температура внутренних органов, которую выдерживает человек, составляет 43 °С, минимальная - 25 °С.

Температурный режим кожи играет основную роль в теплоотдаче. Ее температура меняется в довольно значительных пределах и под одеждой составляет 30…34 °С. При неблагоприятных метеорологических условиях на отдельных участках тела температура может понижаться до 20 °С, а иногда и ниже.

Нормальное тепловое самочувствие имеет место, когда тепловыделение Q ТП человека полностью воспринимается окружающей средой Q ТО , т. е. когда имеет место тепловой баланс Q ТП = Q ТО . В этом случае температура внутренних органов остается постоянной. Если теплопродукция организма не может быть полностью передана окружающей среде (Q ТП > Q ТО ), происходит рост температуры внутренних органов и такое тепловое самочувствие характеризуется понятием «жарко». В случае, когда окружающая среда воспринимает больше теплоты, чем ее воспроизводит человек (Q ТП < Q ТО ), то происходит охлаждение организма. Такое тепловое самочувствие характеризуется понятием «холодно».

Теплообмен между человеком и окружающей средой осуществляется конвекцией Q k в результате смывания тела воздухом, излучением на окружающие поверхности и в процессе тепломассообмена Q л при испарении влаги, выводимой на поверхность кожи потовыми железами и при дыхании. Нормальное самочувствие человека реализуется при соблюдении равенства:

Q ТП = Q k + Q л + Q ТМ

Количество теплоты, отдаваемое организмом человека различными путями, зависит от того или иного параметра микроклимата. Так, величина и направление конвективного теплообмена человека с окружающей средой определяется в основном температурой окружающей среды, атмосферным давлением, подвижностью и влагосодержанием воздуха.

Излучение теплоты происходит в направлении окружающих человека поверхностей, имеющих более низкую температуру, чем температура поверхности одежды и открытых частей тела человека. При высоких температурах окружающих поверхностей (свыше 30 °С) теплоотдача излучением полностью прекращается, а при более высоких температурах теплоотдача излучением идет в обратном направлении - от горячих поверхностей к человеку.

Отдача теплоты при испарении влаги, выводимой на поверхность кожи потовыми железами, зависит от температуры воздуха, интенсивности работы, выполняемой человеком, от скорости движения окружающего воздуха и его относительной влажности.

Температура, скорость, относительная влажность и атмосферное давление окружающего воздуха получили название параметры микроклимата. Температура окружающих предметов и интенсивность физической нагрузки организма характеризуют конкретную производственную обстановку.

Основными параметрами, обеспечивающими процесс теплообмена человека с окружающей средой, как было показано выше, являются показатели микроклимата. В естественных условиях на поверхности Земли (уровень моря) они изменяются в существенных пределах. Так, температура окружающей среды изменяется от -88 до + 60 °С; подвижность воздуха - от 0 до 60 м/с; относительная влажность - от 10 до 100 % и атмосферное давление - от 680 до 810 мм рт. ст.

Вместе с изменением параметров микроклимата меняется и тепловое самочувствие человека. Условия, нарушающие тепловой баланс, вызывают в организме реакции, способствующие его восстановлению. Процессы регулирования тепловыделений для поддержания постоянной температуры тела человека называются терморегуляцией. Она позволяет сохранять температуру тела постоянной. Терморегуляция осуществляется в основном тремя способами: биохимическим путем; путем изменения интенсивности кровообращения и интенсивности потовыделения.

Терморегуляция биохимическим путем, называемая химической терморегуляцией, заключается в изменении теплопродукции в организме за счет регулирования скорости окислительных реакций. Изменение интенсивности кровообращения и потовыделения изменяет отдачу теплоты в окружающую среду и поэтому называется физической терморегуляцией.

Терморегуляция организма осуществляется одновременно всеми способами. Так, при понижении температуры воздуха увеличению теплоотдачи за счет увеличения разности температур препятствуют такие процессы, как уменьшение влажности кожи, и следовательно, уменьшение теплоотдачи путем испарения, снижение температуры кожных покровов за счет уменьшения интенсивности транспортирования крови от внутренних органов, и вместе с этим уменьшение разности температур. Экспериментально установлено, что оптимальный обмен веществ в организме и соответственно максимальная производительность деятельности имеют место, если составляющие процесса теплоотдачи находятся в следующих пределах: Q k ≈30 %; Q л ≈ 50 %; Q ТМ ≈ 20 %. Такой баланс характеризует отсутствие напряженности системы терморегуляции.

Параметры микроклимата оказывают непосредственное влияние на тепловое самочувствие человека и его работоспособность. Установлено, что при температуре воздуха более 25 °С работоспособность человека начинает падать. Предельная температура вдыхаемого воздуха, при которой человек в состоянии дышать в течение нескольких минут без специальных средств защиты, около 116°С.

Переносимость человеком температуры, как и его теплоощущение, в значительной мере зависит от влажности и скорости окружающего воздуха. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени и тем быстрее наступает перегрев тела. Особенно неблагоприятное воздействие на тепловое самочувствие человека оказывает высокая влажность при <ос > 30 °С, так как при этом почти вся выделяемая теплота отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое проливное течение пота, изнуряющее организм и не обеспечивающее необходимую теплоотдачу. Вместе с потом организм теряет значительное количество минеральных солей, микроэлементов и водорастворимых витаминов. При неблагоприятных условиях потеря жидкости может достигать 8…10 л за смену и с ней до 40 г поваренной соли (всего в организме около 140 г NаС1). Потери более 30 г NаС1 крайне опасны для организма человека, так как приводят к нарушению желудочной секреции, мышечным спазмам, судорогам. Компенсация потерь воды в организме человека при высоких температурах происходит за счет распада углеводов, жиров и белков.

Для восстановления водносолевого баланса работающих в горячих цехах устанавливают пункты подпитки подсоленной (около 0,5 % NаС1) газированной питьевой водой из расчета 4…5 л на человека в смену. На ряде заводов для этих целей применяют белково-витаминный наииток. В жарких климатических условиях рекомендуется пить охлажденную питьевую воду или чай.

Длительное воздействие высокой температуры особенно в сочетании с повышенной влажностью может привести к значительному накоплению теплоты в организме и развитию перегревания организма выше допустимого уровня - гипертермии - состоянию, при котором температура тела поднимается до 38…39 °С. При гипертермии и как следствие тепловом ударе наблюдаются головная боль, головокружение, общая слабость, искажение цветового восприятия, сухость во рту, тошнота, рвота, обильное потовыделение, пульс и дыхание учащены. При этом наблюдается бледность, синюшность, зрачки расширены, временами возникают судороги, потеря сознания.

В горячих цехах промышленных предприятий большинство технологических процессов протекает при температурах, значительно превышающих температуру воздуха окружающей среды. Нагретые поверхности излучают в пространство потоки лучистой энергии, которые могут привести к отрицательным последствиям. Инфракрасные лучи оказывают на организм человека в основном тепловое действие, при этом наступает нарушение деятельности сердечно-сосудистой и нервной систем. Лучи могут вызвать ожог кожи и глаз. Наиболее частым и тяжелым поражением глаз вследствие воздействия инфракрасных лучей является катаракта глаза.

Производственные процессы, выполняемые при пониженной температуре, большой подвижности и влажности воздуха, могут быть причиной охлаждения и даже переохлаждения организма - гипотер-мии. В начальный период воздействия умеренного холода наблюдается уменьшение частоты дыхания, увеличение объема вдоха. При продолжительном действии холода дыхание становится неритмичным, частота и объем вдоха увеличиваются. Появление мышечной дрожи, при которой внешняя работа не совершается, а вся энергия превращается в теплоту, может в течение некоторого времени задерживать снижение температуры внутренних органов. Результатом действия низких температур являются холодовые травмы.

2. КОНТРОЛЬ ПОКАЗАТЕЛЕЙ МИКРОКЛИМАТА

Нормативные параметры производственного микроклимата установлены ГОСТ 12.1.005-88, а также СанПиН 2.2.4.584-96.

Этими нормами регламентировали параметры микроклимата в рабочей зоне производственного помещения: температуру, относительную влажность, скорость движения воздуха в зависимости от способности организма человека к акклиматизации в разное время года, характера одежды, интенсивности производимой работы и характера тепловыделений в рабочем помещении.

Таблица– Оптимальные показатели микроклимата на рабочих местах производственных помещений

Период года

Температура воздуха, 0 С

Температура поверхностей, 0 С

Относительная влажность воздуха, %

Скорость движения воздуха, м/с

Холодный

Iа(до139)

22…24

21…25

60…40

0,1

IIб (140…174)

21…23

20…24

60…40

0,1

IIб(175…232)

19…21

18…22

60…40

0,2

IIб (233…290)

17…19

16…20

60…40

0,2

III (более 290)

16…18

15…19

60…40

0,3

Теплый

Iа (до 139)

23…25

22…26

60…40

0,1

Iб (140…174)

22…24

21…25

60…40

0,1

IIа (175…232)

20…22

19…23

60…40

0,2

IIб (233…290)

19…21

18…22

60…40

0,2

III (более 290)

18…20)

17…21

60…40

0,3

Для оценки характера одежды и акклиматизации организма в разное время года введено понятие периода года. Различают теплый и холодный период года. Теплый период года характеризуется среднесуточной температурой наружного воздуха + 10 °С и выше, холодный - ниже + 10°С.

При учете интенсивности труда все виды работ, исходя из общих энегогозатрат организма, делятся на три категории: легкие, средней тяжести и тяжелые. Характеристику производственных помещений по категории выполняемых в них работ устанавливают по категории работ, выполняемых половиной и более работающих в соответствующем помещении.

К легким работам (категория I) относятся работы, выполняемые сидя или стоя, не требующие систематического физического напряжения (работа контролеров, в процессах точного приборостроения, конторские работы и др.). Легкие работы подразделяют на категорию 1а (затраты энергии до 139 Вт) и категорию 16 (затраты энергии 140…174 Вт). К работам средней тяжести (категория II) относят работы с затратой энергии 175…232 (категория На) и 233…290 Вт (категория 116). В категорию На входят работы, связанные с постоянной ходьбой, выполняемые стоя или сидя, но не требующие перемещения тяжестей, в категорию Пб - работы, связанные с ходьбой и переноской небольших (до 10 кг) тяжестей (в механосборочных цехах, текстильном производстве, При обработке древесины и др.). К тяжелым работам (категория III) с затратой энергии более 290 Вт относят работы, связанные с систематическим физическим напряжением, в частности с постоянным передвижением, с переноской значительных (более 10 кг) тяжестей (в кузнечных, литейных цехах с ручными процессами и др.).

В рабочей зоне производственного помещения согласно ГОСТ 12.1.005-88 могут быть установлены оптимальные и допустимые микроклиматические условия. Оптимальные микроклиматические условия - это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека обеспечивает ощущение теплового комфорта и создает предпосылки для высокой работоспособности.

Допустимые микроклиматические условия - это такие сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать напряжение реакций терморегуляции и которые не выходят за пределы физиологических приспособительных возможностей. При этом не возникает нарушений в состоянии здоровья, не наблюдаются дискомфортные теплоощущения, ухудшающие самочувствие, и понижение работоспособности.

Измерения показателей микроклимата проводят в рабочей зоне на высоте 1,5 м от пола, повторяя их в различное время дня и года, в разные периоды технологического процесса. Измеряют температуру, относительную влажность и скорость движения воздуха.

Для измерения температуры и относительной влажности воздуха используют аспирационный психрометр Асмана (рис. 2). Он состоит из двух термометров. У одного из них ртутный резервуар покрыт тканью, которую увлажняют с помощью пипетки. Сухой термометр показывает температуру воздуха. Показания влажного термометра зависят от относительной влажности воздуха: температура его тем меньше, чем ниже относительная влажность, поскольку с уменьшением влажности возрастает скорость испарения воды с увлажненной ткани и поверхность резервуара охлаждается более интенсивно.

Чтобы исключить влияние подвижности воздуха в помещении на показания влажного термометра (движение воздуха повышает скорость испарения воды с поверхности увлажненной ткани, что ведет к дополнительному охлаждению ртутного баллона с соответствующим занижением измеряемой величины влажности по сравнению с ее истинным значением) оба термометра помещены в металлические защитные трубки. С целью повышения точности и стабильности показаний прибора в процессе измерения температуры сухим и влажным термометрами через обе трубки пропускаются постоянные потоки воздуха, создаваемые вентилятором, размещенным в верхней части прибора.

Перед измерением в специальную пипетку набирают воду и увлажняют ее тканевую оболочку влажного термометра. При этом прибор держат вертикально, затем взводят часовой механизм и устанавливают (подвешивают или удерживают в руке) в точке измерения.

Через 3…5 мин показания сухого и, влажного термометров устанавливаются на определенных уровнях, по которым с помощью специальных таблиц рассчитывается относительная влажность воздуха.

Скорость движения воздуха измеряется с помощью анемометров (рис. 2.7). При скорости движения воздуха свыше 1 м/с используют крыльчатые или чашечные анемометры, при меньших скоростях - термоанемометры.

Принцип действия крыльчатого и чашечного анемометров - механический. Под воздействием аэродинамической силы движущегося потока воздуха ротор прибора с закрепленными на нем крыльями (пластинками) начинает вращаться со скоростью, величина которой соответствует скорости набегающего потока. Через систему зубчатых колес ось соединена с подвижными стрелками. Центральная стрелка показывает единицы и десятки, стрелки мелких циферблатов - сотни и тысячи делений. С помощью расположенного сбоку рычага можно отключить ось от механизма зубчатых колес или подключить ее.

Перед измерением записывают показания циферблатов при отключенной оси. Прибор устанавливают в точке измерения, и ось с закрепленными на ней крыльями начинает вращаться. По секундомеру засекают время и включают прибор. Через 1 мин движением рычага ось отключают и снова записывают показания. Разность показаний прибора делят на 60 (число секунд в минуте) для определения скорости вращения стрелки - количества проходимых ею делений за 1 с. По найденной величине с помощью прилагаемого к прибору графика определяют скорость движения воздуха в секунду.


Для измерения малых скоростей движения воздуха используют термоанемометр, который позволяет также определять температуру воздуха. Принцип измерения основан на изменении электрического сопротивления чувствительного элемента прибора при изменении температуры и скорости воздуха. По величине электрического тока, измеряемого гальванометром, определяют с помощью таблиц скорость движения потока воздуха

ЛИТЕРАТУРА

    Денисенко Г.Ф. Охрана труда: Учебное пособие. – М.: Высшая школа, 1995. .

    Дружинин В.Ф., Мотивация деятельности в чрезвычайных ситуациях, М., 1996.

  1. Жидецкий В.Ц., Джигирей В.С., Мельников А.В. Основы охраны труда. Учебник – Изд. 2-е, дополненное. –СПб: Афиша, 2000.
    Значение окружающей среды для жизнедеятельности человека Жилая среда и ее влияние на здоровье человека БЕНЗ-А-ПИРЕН. ПРИЧИНЫ ПОЯВЛЕНИЯ В ОКРУЖАЮЩЕЙ СРЕДЕ И ПИЩЕ

    2014-05-14

Человек постоянно находится в состоянии обмена теплотой с окружающей средой.

Наилучшее тепловое самочувствие человека будет тогда, когда тепловыделения (QТB) организма человека полностью отдаются окружающей среде (QТО), т.е. имеет место тепловой баланс

Превышение тепловыделения организма над теплоотдачей в окружающую среду (QTB > QTО) приводит к росту температуры внутренних органов, нагреву организма и к повышению его температуры - человеку становится жарко. Наоборот, превышение теплоотдачи над тепловыделением (Q.ТВ < QТО) приводит к охлаждению организма и к снижению его температуры - человеку становится холодно.

Средняя температура тела человека - 36,6 0 С. Даже незначительные отклонения от этой температуры в ту или другую сторону приводят к ухудшению самочувствия человека.

Тепловыделения (QTB) организма определяются прежде всего тяжестью и напряженностью выполняемой человеком работы, в основном величиной мышечной нагрузки.

Теплоотдача от организма человека в окружающую среду происходит в результате:

Теплопроводности (QТ) через одежду. Теплота может передаваться только от тела с более высокой температурой к телу с менее высокой температурой. Интенсивность отдачи теплоты зависит от разности температур тел (в нашем случае - это температура тела человека и температура окружающих человека предметов и воздуха) и теплоизолирующих свойств одежды.

Чтобы проиллюстрировать это, можно выполнить простейший эксперимент.

Опустите в стакан с горячей водой термометр, а сам стакан поместите в емкость сначала с теплой, а затем с холодной водой. Наблюдайте за скоростью уменьшения показаний термометра в первом и во втором случае.

Понижение температуры в стакане при нахождении его в холодной воде будет происходить быстрее, чем интенсивность отдачи теплоты от горячей воды в стакане к теплой воде в емкости. Этот опыт иллюстрирует зависимость теплопередачи от разницы температур.

Регулировать теплообмен человека с окружающей средой можно за счет температуры окружающей среды и выбора одежды с различными теплоизолирующими свойствами.

Конвективного теплообмена (QК). Что это такое? Воздух, находящийся вблизи теплого предмета, нагревается. Нагретый воздух имеет меньшую плотность и, как более легкий, поднимается вверх, а его место занимает более холодный воздух окружающей среды.

Явление обмена порций воздуха за счет разности плотностей теплого и холодного воздуха называется естественной конвекцией.

Если теплый предмет обдувать холодным воздухом, то процесс замены более теплых слоев воздуха у предмета на более холодные ускоряется. В этом случае у нагретого предмета будет находиться более холодный воздух, разность температур между нагретым предметом и окружающим воздухом будет больше, и, как мы уже выяснили раньше, интенсивность отдачи тепла от предмета окружающему воздуху возрастет. Это явление называется вынужденной конвекцией.

Например: иллюстрирующим явление вынужденной конвекции, является то, что при одинаковой температуре воздуха в ветреную погоду человек воспринимает климатические условия как более холодные, т.к. отдача тепла от его организма более интенсивная.

Таким образом, регулировать теплообмен между человеком и окружающей средой можно изменением скорости движения воздуха.

  • - излучения (QИЗ) на окружающие поверхности. Тепловая энергия, превращаясь на поверхности горячего тела в лучистую (электромагнитную волну) - инфракрасное излучение, передается на другую - холодную - поверхность, где вновь превращается в тепловую. Лучистый поток тем больше, чем больше разница температур человека и окружающих предметов. Причем лучистый поток может исходить от человека, если температура окружающих предметов ниже температуры человека и наоборот, если окружающие предметы более нагреты.
  • - испарения (QИСП) влаги с поверхности кожи. Если человек потеет, на его коже появляются капельки воды, которые испаряются, и вода из жидкого состояния переходит в парообразное. Этот процесс сопровождается затратами энергии (QИСП) на испарение и в результате охлаждением организма.

От чего же зависит интенсивность испарения, а, следовательно, и величина отдачи тепла от организма окружающей среде?

Во-первых, от температуры окружающей среды - чем выше температура, тем выше интенсивность испарения; во-вторых, от влажности воздуха - чем выше влажность, тем меньше интенсивность испарения. Для каждой температуры воздуха характерно максимальное количество воды, которое может находиться в единице объема воздуха в парообразном состоянии.

Проиллюстрировать это явление поможет простейший эксперимент. Налить в небольшую бутылку воды, опустить в нее термометр, обернуть бутылку мокрой тряпкой и поставить ее на солнце. Следить за показаниями термометра. Температура воды в бутылке начнет понижаться.

Если бутылка не будет завернута в мокрую тряпку, температура будет повышаться. Это говорит о том, что тепловая энергия расходуется на испарение воды из тряпки.

Этим простейшим приемом можно пользоваться в том случае, если в жаркую погоду захочется попить охлажденной воды. Охлаждением за счет испарения объясняется также то, что в жаркую солнечную погоду не рекомендуется поливать растения, особенно чувствительные к температуре. За счет интенсивного испарения вегетативные части растений могут охладиться до недопустимых температур.

Обычно влажность воздуха измеряют величиной относительной влажности (?), выраженной в процентах. Например, относительная влажность? = 70% означает, что в воздухе воды в парообразном состоянии находится 70% от максимально возможного количества. Относительная влажность 100% означает, что воздух насыщен водяными парами и в такой среде испарение происходить не может.

Интенсивность испарения возрастает при увеличении скорости движения воздуха. Это объясняется теми же причинами, что и увеличение теплообмена при вынужденной конвекции. Слои воздуха, находящиеся вблизи тела человека и насыщенные водяными парами, за счет движения воздуха удаляются и заменяются более сухими порциями воздуха, при этом возрастает интенсивность испарения.

Нагрева выдыхаемого воздуха (QB). В процессе дыхания воздух окружающей среды, попадая в легкие человека, нагревается и одновременно насыщается водяными парами. Таким образом, теплота выводится из организма человека с выдыхаемым воздухом (QB).

Таким образом, теплообмен между человеком и окружающей средой осуществляется за счет теплопроводности (QT), конвективного теплообмена (Qк), излучения (Qиз), испарения (QИСП), нагрева выдыхаемого воздуха (QB), т.е.:

Qобщ = QТ + QК + QИЗ + QИСП + QB - уравнение теплового баланса

Вклад перечисленных выше путей передачи тепла непостоянен и зависит от параметров микроклимата в производственном помещении, а также от температуры окружающих человека поверхностей. Если t этих поверхностей ниже t человеческого тела, то теплообмен излучением идет от организма человека к холодным поверхностям. В противном случае теплообмен осуществляется в обратном направлении: от нагретых поверхностей к человеку. Теплоотдача конвекцией зависит от t воздуха в помещении и скорости его движения на рабочем месте, а отдача теплоты путем испарения - от относительной влажности и скорости движения воздуха.

Установлено, что обмен веществ в организме человека оптимален и, соответственно, его работоспособность высока, если составляющие процесса теплоотдачи находятся примерно в следующих пределах:

QK+ QT ? 30%; QИЗ? 45%; QИС?20%; QВ?5%.

Такой баланс составляющих теплоотдачи характеризует отсутствие напряженности системы терморегуляции человека.

Направление тепловых потоков QT, QK, Qиз может быть от человека к окружающим человека воздуху и предметам и наоборот, в зависимости от того, что выше - температура тела человека или окружающего воздуха и окружающих его тел (рис. 1.).

Рис. 1. Схема направления тепловых потоков: QB - выдыхание теплового воздуха; QИ - испарение; Qиз - излучение; QK - конвективный теплообмен; QT - теплопроводность

Тепловыделения организма человека определяются прежде всего величиной мышечной нагрузки при деятельности человека, а теплоотдача -температурой окружающего воздуха и предметов, скоростью движения и относительной влажностью воздуха.



mob_info