Липопротеины (Липопротеиды) – что это такое. Транспорт липидов - отдельная задача Основные группы липопротеинов сыворотки крови

Основные липиды, которые находятся в плазме крови, представлены холестерином, триглицеридами и фосфолипидами. Они жизненно необходимы организму для осуществления многих функций, но из-за их особенностей, в частности, нерастворимой структуры, для их переноса к клеткам тканей и органов необходимы белки – аполипопротеины. Связываясь с ними, липиды могут беспрепятственно перемещаться вместе с током крови.

Таким образом, липопротеины плазмы крови представляют собой комплекс белков и липидов, который имеет водорастворимую структуру, что позволяет им активно включаться в метаболические процессы.

Все известные липопротеиды содержат в себе холестерин, триглицериды и фосфолипиды, но их пропорции отличаются в зависимости от фракции липидного соединения. Липопротеины разняться и по другим параметрам: размеру соединения, группам апопротеинов, скорости флотации, плотности комплекса.

Классификация липопротеидов

На сегодняшний день известно множество различных классификаций липидных комплексов, но наиболее известной и популярной является классификация, в основе которой лежит порядок продвижения липопротеинов от линии старта в гравитационном поле в процессе ультрацентрифугирования.

Выделяют следующие фракции липопротеидов:

  • (ХМ);
  • липопротеины низкой плотности (ЛПНП);
  • (ЛПОНП);
  • липопротеины промежуточной плотности (ЛППП);
  • плотности (ЛПВП).

Определяют наличие этих соединений в крови посредством биохимии или липидограммы.
Каждая группа липопротеидов имеет различные размеры входящих в соединение частиц, содержание белков в них также разное. Рассмотрим в таблице основные характеристики транспортных форм липидов.

Таблица сравнительной характеристики липопротеинов

ХМ ЛПНП ЛПОНП ЛППП ЛПВП
Содержание белков, % 2 22 10 11 50
Содержание холестерина, % 2 8 7 8 4
Размер частиц, нм 75-1200 18-26 30-80 25-35 8-11
Место образования Эпителий тонкого кишечника Кровь Клетки печени Кровь Клетки печени
Функции Транспорт жирных кислот и холестерина, которые поступают с пищей, из кишечника к клеткам печени и периферическим тканям. Транспорт липидов от клеток печени к периферийным тканям. Промежуточная форма преобразования ЛПОНП в ЛПНП. Транспорт липидов от периферийных тканей к клеткам печени, удаление избытка холестерина из других липопротеинов и клеток организма.

Все названные фракции липопротеинов находятся в неразрывной связи друг с другом, обеспечивая полноценное питание клеток организма и являясь основой биохимии многих процессов. Если под влиянием различных факторов наблюдается нарушение обмена липопротеидов, естественный баланс липидов в крови нарушается, и в организме начинают развиваться патологические процессы, главный из которых представлен атеросклеротическим поражением сосудов. Рассмотрим названные липопротеины крови подробнее.

Хиломикроны

Образование этих липопротеидов крови происходит в эпителиальных клетках кишечника после переваривания пищи и всасывания жиров из тонкой кишки. После этого они попадают в межклеточное пространство и дальше всасываются в лимфатические капилляры ворсинок. Являются самыми крупными в диаметре липопротеиновыми соединениями.

Хиломикроны переносят в крови холестерин, триглицериды и экзогенные жирные кислоты. На 85% ХМ состоят из триглицеридов, поэтому их относят к группе триглицерид-богатым липопротеинам. Эти липидные соединения необходимы для переноса триглицеридов в несколько первых часов после приема пищи. Считается, что в норме спустя 12 часов после последнего принятия пищи они полностью исчезают из плазмы крови.

В процессе метаболизма липидов эти комплексы встречаются в крови с липопротеинами высокой плотности и обмениваются разными подтипами белков – апопротеинов. При их расщеплении освобождаются эфиры холестерина и белки, часть которых связывается липопротеидами высокой плотности, а остальная масса попадает в клетки печени, преобразуется там и выводится из организма.

ЛПНП

Эту фракцию липопротеинов относят к наиболее атерогенным, так как она содержит в своем составе в среднем 45% холестерина и является его основной транспортной формой, при этом также способствуют транспортировке каротиноидов, триглицеридов, витамина Е и некоторых других компонентов. При этом около 60-70% всего холестерина сыворотки крови концентрируется именно в этих соединениях.

В процессе липолиза эти соединения образуются из ЛПОНП, при этом содержание триглицеридов в полученном комплексе падает, а холестерина, наоборот, – растет. Так, эти структуры являются завершающим этапом метаболизма липидов, произведенных клетками печени.

Считается, что именно концентрация этих липопротеинов в крови более полно отражает вероятность атеросклеротических поражений сосудистых стенок, даже уровень холестерина имеет в этом плане меньшее значение.

В результате нарушения обмена липопротеидов низкой плотности, особенно в сторону увеличения их уровня в крови, у человека начинают развиваться тяжелые заболевания, особенно если вовремя не приступить к его нормализации. Причинами таких нарушений могут быть:

  • неправильное питание;
  • болезни печени;
  • наследственные нарушения липидного обмена;
  • курение и чрезмерное употребление алкоголя;
  • эндокринные заболевания;
  • малоподвижный образ жизни.

Чтобы постоянно контролировать этот показатель, нужно ежегодно делать биохимию крови, и в случае обнаружения малейших отклонений от нормы принимать соответствующие меры.

ЛПОНП

Эта фракция липопротеинов по своим составу и структуре похожи на хиломикроны, однако по размеру меньше. В их составе меньше триглицеридов, но больше аполипопротеинов, фосфолипидов и холестерина. При этом ЛПОНП вместе с хиломикронами относят к триглицерид-богатым липопротеидам.

Местом синтеза этих комплексов называют клетки печени, а их главная задача – транспорт триглицеридов, образованных в этом же органе. Эти комплексы также транспортируют холестерин, эфиры холестерина и фосфолипиды к клеткам организма.

Скорость образования этих фракций липопротеидов варьируется в зависимости от определенных условий: она растет при увеличенном поступлении в печень свободных жирных кислот и большого количества углеводов.

ЛПОНП являются предшественниками липопротеидов низкой плотности, так как в результате гидролиза под действием фермента липопротеиновой липазы первые распадаются и образуется промежуточная форма липидов – ЛППП, которые дальше в процессе того же гидролиза превращаются в ЛПНП.

ЛПОНП называют высоко атерогенными соединениями, так как они относятся к источникам «плохого» холестерина в организме. Если эти комплексы повышены в крови, это создает предпосылки к развитию атеросклероза и его последствий. Основной причиной повышения их уровня называют наследственную предрасположенность и чрезмерное поступление с пищей животных жиров. Другими причинами этой патологии могут быть:

  • болезни печени и желчного пузыря;
  • эндокринные нарушения;
  • ожирение;
  • алкоголизм;
  • заболевания почек, особенно в хронической форме.

ЛППП

Эти структурные соединения образуются в плазме крови в процессе преобразования ЛПОНП в ЛПНП и их нередко называют ремнантными ЛПОНП. Под действием фермента липопротеинлипазы липопротеиды очень низкой плотности переходят в иную форму – ЛППП, половина которых в процессе сложных биохимических реакций полностью выводятся из организма, а вторая их часть в результате гидролиза с участием печеночной липазы переходит в ЛПНП.

Состав этих частиц напоминает нечто среднее между составами липопротеидов низкой и очень низкой плотности. Отмечено, что у здоровых людей в крови, взятой натощак, эти комплексы либо вообще отсутствуют, либо их концентрация меньше уровня ЛПНП в десять раз.

Основной причиной повышение концентрации этих соединений в плазме крови называют наследственную предрасположенность и рацион, богатый животными жирами. Этот фактор способствует развитию сердечно-сосудистых заболеваний.

ЛПВП

Эти соединения называют антиатерогенными, так как они не приводят к увеличению уровня «плохого» холестерина в крови, а наоборот, при их достаточной концентрации способствуют его связыванию и выведению из организма. Образуются они в клетках печени и наполовину состоят из белков, т. е. имеют максимальную из возможных плотность. При этом содержание холестерина в них минимально. Имеют самый малый размер и по форме напоминают диск, из-за чего в узких кругах ЛПВП именуют как «диски».

Синтез этих частиц происходит в клетках печени, при высвобождении из которых они связываются с фосфолипидами и начинают взаимодействовать с другими фракциями липопротеидов и клетками организма, захватывая холестерин и приобретая полноценную форму липидного соединения. Так ЛПВП доставляют излишек холестерина снова к клеткам печени, где он подвергается распаду и выводу через желудочно-кишечный тракт.

Другими словами, происходит постоянный обмен холестерином между ЛПНП и ЛПВП, при этом холестериновый поток направлен к последним. «Полезные» липопротеины получают холестериновые клетки от «плохих», после чего транспортируют его в печень для последующей переработки в желчные кислоты. Описанный процесс называют единственным естественным способом выведения холестерина из организма, поэтому для здоровья сердца и сосудов рекомендуют всегда поддерживать оптимальный уровень ЛПВП в плазме крови.

Модификации липопротеинов

Для определения риска развития сердечно-сосудистых заболеваний имеют значение не только сами липопротеиды, но и их модифицированные формы. Липопротеиды могут модифицироваться из обычных фракций, создавая патологические соединения. Основными причинами этого процесса называют: выброс клетками свободных радикалов; повышенная концентрация глюкозы в крови; выброс в кровь продуктов липидного обмена.

Выделяют следующие наиболее значимые модифицированные липопротеины:

  1. Липопротеин (а) – это особый вид липопротеидов низкой плотности, которые отличаются лишь по некоторым структурным особенностям. Так, к клетке липопротеина (а) дополнительно прикрепляется полипептидная белковая цепь. Это приводит к тому, что на стенках сосудов избирательно начинают накапливаться липопротеины (а), и развивается воспалительный процесс в них.
  2. Окисленные ЛПНП. В результате поступления в кровь большого числа свободных радикалов липиды мембран ЛПНП окисляются и в них внедряются продукты перекисного окисления липидов. Этот процесс инициирует появление пенистых клеток, которые становятся строительным материалом атеросклеротических бляшек.
  3. Гликированные ЛПНП. При присоединении глюкозы к белкам липопротеинов низкой плотности изменяется структура последних. Они модифицируются и в новой структуре способны задерживаться в кровяном русле, подвергаясь дополнительному окислению и откладываясь на стенках сосудов.
  4. Мелкие, плотные ЛПНП. Их относят к важнейшей группе модифицированных атерогенных соединений. Они содержат достаточное количество холестерина и фосфолипидов, при этом по структуре схожи с артериальными клетками. В результате сложной биохимии из мпЛПНП высвобождаются все фосфолипиды и холестерин, которые впоследствии откладываются на эндотелии сосудов.
  5. Модифицированные ЛПВП. В процессе синтеза ЛПВП в клетках печени некоторые соединения высвобождаются с дефектами, свойства которых переводят модифицированные ЛПВП из разряда антиатерогенных в атерогенные.

Наличие названных комплексов в плазме крови приводит к нарушению жирового обмена в организме, что чревато атеросклеротическими изменениями сосудов. Распознать модифицированные липопротеиды можно при помощи развернутой липидограммы. Такое исследование обязательно должно проводиться при подозрении на тяжелые в организме, а также при их наследственных формах.

Нормы содержания в крови

Важнейшим способом определения риска развития сердечно-сосудистых заболеваний является биохимия крови. Для каждой фракции липопротеидов подсчитаны нормы. Если результат будет превышать или принижать их, это говорит о необходимости проведения дополнительных исследований с целью подтверждения имеющихся заболеваний. Нормы липопротеидов в крови представлены в следующей таблице:

Для женщин эти показатели имеют свои нормы, что связано с некоторыми особенностями женского организма. Так, сюда можно отнести меньшую массу тела, особый гормональный фон (в частности, содержание в крови ингибина В и фолликулостимулирующего гормона) и соответствующие особенности обменных процессов в организме. Поэтому для женщин такая таблица будет выглядеть следующим образом:

Если полученные результаты незначительно отличаются от нормы, то предотвратить атеросклероз и нормализовать липидный обмен поможет коррекция питания. В противном случае может понадобиться серьезная медикаментозная терапия.

Отмечено, что довольно часто у женщин в период беременности, первые 6 недель после родов, перименопаузы и менопаузы данные показатели могут значительно разниться с нормальными значениями. Такие результаты можно отнести к варианту нормы (с учетом индивидуальных особенностей), если пациентка не имеет в анамнезе заболеваний печени, щитовидной железы, гипофиза, почек и некоторых других органов.

Повышение атерогенных фракций липопротеидов (ЛПНП, ЛПОНП), а также понижение липопротеидов высокой плотности у мужчин и женщин может говорить о наличии следующих заболеваний:

  • атеросклероз;
  • стенокардия;
  • инфаркт миокарда;
  • любой из типов гиперлипидемий;
  • наследственные гиперлипидемии и гиперхолестеринемии;
  • нарушение выработки гормонов щитовидной железы как в сторону увеличения, так и снижения;
  • заболевания гипофиза;
  • заболевания почек (нефротический синдром, хроническая почечная недостаточность);
  • болезни печени (хроническая печеночная недостаточность, порфирия, некоторые типы гепатита);
  • заболевания поджелудочной железы, в частности панкреатит и злокачественное образование;
  • алкогольная интоксикация;
  • ожирение;
  • патологии обмена веществ (например, подагра).

Для подтверждения большинства из перечисленных патологий недостаточно только проведения биохимии крови, потребуются и другие диагностические исследования. Стоит понимать, что некоторые состояния (например, беременность) или прием медикаментозных препаратов могут повлиять на результат биохимии крови. Поэтому такие особенности стоит обсудить с врачом, так как они должны быть указаны в направлении на анализ крови. Даже если женщина принимает противозачаточные таблетки, нужно либо на две недели отменить их прием или указать этот факт в бланке при прохождении липидограммы.

Атерогенные и антиатерогенные фракции липопротеидов

В последние годы отмечено большое распространение атеросклероза, который связан в первую очередь с развитием в организме заболевания геперлипопротеинемия и гиперхолестеролемией, которая обычно сопровождает данное состояние. Установлено, что развитие атеросклероза напрямую связано с повышением в крови атерогенных липопротеинов – ЛПНП и ЛПОНП (это наиболее атерогенные липидные соединения). При этом снижается концентрация в плазме крови липопротеидов высокой плотности – единственных антиатерогенных фракций липопротеидов.

К атерогенным липопротеинам также относят ЛППП, но их концентрация в крови не так важна в процессе оценки риска атеросклероза, так как эти фракции являются промежуточными липидами.

Как уже было описано ранее, фракция ЛПНП осуществляет транспорт эндогенного холестерина к периферическим тканям, в ЛПВП проделывают обратную работу – высвобождают холестериновые клетки из липопротеидов низкой плотности и клеток организма, после чего доставляют их в печень для последующей переработки в желчь и выведения из организма естественным путем. По этой причине оптимальный уровень антиатерогенных фракций липопротеидов так важен для липидного обмена и предотвращения образования атеросклеротических бляшек на стенках сосудов.

Рассматривая хиломикроны, стоит отметить, что сами эти комплексы не обладают атерогенными свойствами. Однако их остаточные компоненты могут быть атерогенными.

Для определения риска развития сердечно-сосудистых заболеваний используют коэффициент атерогенности, который рассчитывается по следующей формуле:

КА=(Общий холестерин – ЛПВП)/ЛПВП.

В норме у мужчин и женщин этот индекс должен находиться в диапазоне 2-3 единиц. Если он больше трех – это говорит о высоком риске атеросклероза. Пациенты с результатом больше 5 должны понимать, что атеросклеротические процессы уже протекают в их сосудах. Если этот показатель меньше двух, то особых нарушений со стороны липидного обмена в организме не наблюдается, но такой результат может быть спровоцирован некоторыми другими заболеваниями (например, почек, печени).

Для оценки состояния своего здоровья врачи рекомендуют сдавать биохимию крови ежегодно, а ее расширенную форму, где определяются все липопротеины плазмы крови – раз в 5 лет. Это позволит своевременно обнаружить нарушения липидного обмена и принять соответствующие меры для предотвращения развития тяжелых заболеваний сердечно-сосудистой системы.

ЛИПИДЫ являются нерастворимыми в воде соединениями, поэтому для их переноса кровью необходимы специальные переносчики, которые растворимы в воде. Такими транспортными формами являются ЛИПОПРОТЕИНЫ. Они относятся к свободным ЛИПИДАМ. Синтезированный жир в стенке кишечника, либо жир синтезированный в других тканях органах может быть транспортирован кровью лишь после включения в состав ЛИПОПРОТЕИНОВ, где роль стабилизатора играют белки.

По своему строению мицеллы ЛИПОПРОТЕИНЫ имеют наружный слой и ядро. Наружный слой формируется из БЕЛКОВ, ФОСФОЛИПИДОВ и ХОЛЕСТЕРИНА, которые имеют гидрофильные полярные группы и проявляют сродство к воде. Ядро состоит из ТРИГЛИЦЕРИДОВ, ЭФИРОВ ХОЛЕСТЕРИНА, ВЖК, витаминов A, D, Е, К. Т.о. нерастворимые жиры легко транспортируются по всему организму после синтеза в стенке кишечника, а также синтеза в других тканях между клетками, которые их синтезируют и используют.

Выделяют 4 класса ЛИПОПРОТЕИНОВ крови, которые отличаются друг от друга по своему химическому состоянию, размерам мицелл и транспортируемым жирам. Поскольку они имеют различную скорость оседания в растворе поваренной соли, их разделяют на:

1. ХИЛОМИКРОНЫ. Образуются в стенке кишечника и имеют самый крупный размер частиц.

2. ЛПОНП. Синтезируются в стенке кишечника и печени.

3. ЛПНП. Образуются в эндотелии капилляров из ЛПОНП.

4. ЛПВП. Образуются в стенке кишечника и печени.

Т.о. транспортные ЛП крови синтезируются двумя видами клеток - ЭНТЕРОЦИТАМИ и ГЕПАТОЦИТАМИ. Было установлено, что ЛП крови при электрофорезе белков движутся в зоне альфа и бета - ГЛОБУЛИНОВ, поэтому их по электрофоретической подвижности ещё

обозначают как:

Пре-бета- ЛП =ЛПОНП,

Бета-ЛП=ЛПНП,

Альфа-ЛП=ЛПВП.

рис. Химический состав липопротеинов крови

ХИЛОМИКРОНЫ (ХМ) как самые крупные частицы при электрофорезе остаются на старте.

Максимальная их концентрация достигается к 4 - 6 час.после приёма пищи. Расщепляются они

под действием фермента - ЛИПОПРОТЕИДЛИПАЗЫ, который образуется в печени, легких, жировой ткани

после приёма пищи ХМ преимущественно транспортируют ТРИАЦИЛГЛИЦЕРИДЫ (до 83 %).

ЛПОНП и ЛПНП в основном транспортируют холестерин и его эфиры в клетки органов и тканей. Эти фракции относятся к АТЕРОГЕННЫМ. ЛПВП- принято обозначать как АНТИАТЕРОГЕННЫМИ ЛП, которые осуществляют транспорт ХОЛЕСТЕРИНА (излишки холестерина освобождённый в результате распада мембран клеток холестерин) в печень для последующего окисления с участием цитохрома Р450 с образованием желчных кислот, которые выводятся из организма в виде КОПРОСТЕРИНОВ. Распадаются ЛИПОПРОТЕИНЫ крови после эндоцитоза в ЛИЗОСОМАХ и МИКРОСОМАХ: под действием ЛИПОПРОТЕИДЛИПАЗЫ в клетках печени, почек, надпочечников, кишечника жировой ткани, эндотелия капилляров. Продукты гидролиза ЛП вовлекаются в клеточный метаболизм.

Липопротеиды состоят из липидов и белков. Они нужны для переноса холестерина в клетки, которые его используют. Дисбаланс в этой системе приводит к развитию тяжелых заболеваний.

Термином липопротеиды называют сложные органические комплексы, образованные из липидов и специальных белков, участвующих в транспортировке гидрофобных молекул. Холестерин, фосфолипиды, триглицериды – все эти вещества относятся к липидам. Это значит, что они не растворяются в воде, только могут смешиваться с ней при определенных условиях, образуя эмульсии.

Липопротеиды и липопротеины – это слова-синонимы, но понятие липопротеиды чаще упоминают для обозначения транспортных форм свободного холестерина, а также его эфиров. Поскольку холестерин участвует в синтезе жизненно важных гормонов и построении клеточных мембран, его доставка периферическим тканям в организме играет существенную роль.

Виды липопротеидов различаются по плотности и заряду на поверхности. Эти свойства определяют их подвижность в электромагнитном поле и разделение на фракции при центрифугировании.Наиболее клинически значимы следующие виды липопротеинов:

  • хиломикроны;
  • пре-в липопротеиды;
  • в липопротеиды или бета;
  • а липопротеиды или альфа.

Каждый из этих типов образуется в тканях, выполняя особые функции. Они имеют сходный состав, но отличаются соотношением липидов и белка. В целом портрет отдельно взятого липопротеина определяется качеством белковых молекул, что делает комплекс узнаваемым для разных клеток в организме.

В лабораторных исследованиях впервые липопротеиды, липопротеины были разделены на фракции путем центрифугирования. Легкие оказались вверху пробирки, а имеющие большую плотность внизу. Отсюда пошли другие названия, в которых указывается плотность каждой фракции.

Очень низкой плотности называются липопротеиды легче воды. Из них образуются липопротеиды, относящиеся к фракции низкой плотности, заслужившие название «плохих». А «хорошие» липопротеин альфа называются высокой плотности, они тяжелее воды.

При определении вероятности развития болезней сердца и сосудов оценивается общий уровень холестерина, фракции отдельных липопротеидов, их соотношение. Снизить количество «плохих» – значит уменьшить вероятность заболеть инфарктом или инсультом.

Хиломикроны

Самые крупные и легкие представители класса липопротеинов – хиломикроны, образующиеся в стенке кишечника и служащие упаковкой для жиров, поступающих с едой. Большой размер не позволяет этой фракции проникать непосредственно в кровь. Из толщи кишечной стенки они поступают в общий кровоток, пройдя сначала через сеть лимфатических капилляров.

В состав хиломикронов входит всего 2% белка и 5% холестерина с его эфирами. Они легче воды, потому что нагружены триацилглицеридами, проще говоря, жиром. После приема пищи хиломикроны начинаю поступать в плазму крови, придавая ей опалесцирующий вид наподобие
молока. Несколько часов они выполняют свою работу, доставляя молекулы липидов нуждающимся клеткам.
При обследовании больных в биохимическом анализе крови оценивают количество переносимых хиломикронами триацилглицеридов. Менее чем через 12 часов от последнего приема пищи показатели будут повышены и неточны. Анализ выполняется натощак. У здоровых людей через 12–14 часов голодания в плазме крови хиломикронов нет.
Норма триацилглицеридов для мужчин составляет 0,45–1,81 ммоль/л, норма для женщин – 0,40–0,53 ммоль/л. Значения отличаются у мужчин и женщин за счет влияния половых гормонов.

Липопротеиды очень низкой плотности

Однозначной оценки от медицинского сообщества этот класс липопротеидов еще не получил. Их роль в развитии атеросклероза достоверно не установлена, а оптимальный уровень для мужчин и женщин не определен. Их количество в организме повышено у людей, злоупотребляющих алкоголем.

Они образуются в печени и служат транспортной формой для эндогенного холестерина. Под действием ферментов в плазме крови из них образуются в липопротеиды за счет переноса белков с липопротеин а.

Липопротеиды бета

Липопротеиды низкой плотности заслужили название «плохие» за свою высокую атерогенность. Их состав включает 55% холестерина, но только 22% белка. Около 70% всего холестерола в организме переносят в липопротеиды, а это основная транспортная форма для доставки холестерина в ткани. Без этой функции, которую выполняют в липопротеиды, невозможен жизненно необходимый синтез мембран клеток и стероидных гормонов.

Бета липопротеиды в крови образуются из липопротеидов очень низкой плотности под действием фермента липопротеинлипазы. Единственный вид белка, входящий в их состав, является тем отличительным знаком, который позволяет клеткам узнавать этот комплекс, захватывая его из крови. Обновление мембран клеток, синтез витамина Д и гормонов стероидной природы напрямую зависят от этой функции.

Клетки вылавливают липопротеиды из крови за счет взаимодействия с белком, образующим комплекс с липидами. Количество рецепторов в организме непостоянно, зависит от действия гормонов.

Это объясняет, почему атеросклероз часто осложняет течение некоторых заболеваний эндокринной системы, поэтому их нужно снизить.

Количество рецепторов увеличивается под действием инсулина и гормонов щитовидной железы. У больных сахарным диабетом или при гипотиреозе липопротеиды бета часто бывают повышены, как повышен и риск развития сердечных катастроф. Пациентам следует строго соблюдать диету, снизить количество углеводов, принимать лекарства.

Если повышен уровень стероидных гормонов, это тоже увеличивает риск атеросклероза. Гормоны коркового слоя надпочечников способны снизить образование рецепторов. У женщин детородного возраста благодаря эстрогенам «плохие» липопротеиды редко бывают повышены.

Норма липопротеидов низкой плотности для мужчин и женщин – не выше 3,36 ммоль/л.

Липопротеиды альфа

Липопротеин а выполняет две основные функции: транспортирует холестерин из тканей в печень и поставляет белковые молекулы другим липопротеинам. В их состав входит 50% белка, а холестерина около 20%. Печеночные клетки и стенка кишечника синтезируют незрелые липопротеины альфа, под действием ферментов плазмы крови изменяется количество белковых и липидных молекул, составляющих полноценный комплекс.


Липопротеиды альфа тяжелее воды и быстрее всех движутся в электрическом поле. Норма липопротеин а для мужчин и женщин 0,92–1,95 ммоль/л.

Дислипопротеинемия

Сложный динамический процесс обмена липидами и белками между различными классами липопротеидов происходит непрерывно. Нарушение этих процессов проявляется дисбалансом, когда те или другие вещества повышены, снижены или отсутствуют. Дислипопротеинемии бывают наследственными или вторичными, сопровождать нарушения эндокринной системы и обмена веществ.

Семейные гиперлипопротеинемии

Генетические аномалии любого из белков, составляющих липопротеидные комплексы, приводят к развитию серьезных патологий. Дефектные гены не затрагивают половые хромосомы, болезни одинаково поражают мужчин и женщин.

Уровень триацилглицеридов крови и холестерина повышен. У людей рано ухудшается память, из-за сужения просвета сосудов возникают сильные боли в животе, нарушаются функции поджелудочной железы.

Симптомы коронарной недостаточности начинают проявляться еще в подростковом возрасте. Больные подвержены опасности развития раннего, до 30 лет, инфаркта миокарда. Снизить риск можно строгим соблюдением диеты с ограничением жиров, приемом статинов.

Акантоцитоз

Дефект гена, кодирующего образование единственного белка «плохих» липопротеидов приводит к развитию акантоцитоза. Заболевание наследуется независимо от пола, встречается у мужчин и женщин.

Когда в липопротеиды понижены, нарушается транспорт холестерина, необходимого для построения мембран, клеток нервной системы и крови. Из-за поражения миелиновых оболочек нейронов возникают неврологические расстройства, нарушается зрение. Время жизни эритроцитов сокращается, развивается анемия.

Организм не усваивает пищевые жиры, они накапливаются в печени, кишечнике, возникает дефицит жирорастворимых витаминов. Больным рекомендуют диету с ограничением животных жиров и прием больших доз витамина Е.

Модифицированные липопротеиды

Модификации липопротеидов возникают при действии на них некоторых ферментов, антител, продуктов перекисного окисления или глюкозы. Такое влияние изменяет свойства белковых молекул, а с ними пути метаболизма. Модифицированные липопротеины наиболее атерогенны. Они оседают на стенках артерий, повреждая их, формируя атеросклеротические бляшки.

Когда в крови повышен уровень глюкозы, ее присоединение к комплексам липопротеидов нарушает их нормальный обмен. Это объясняет ранее развитие атеросклероза у людей, страдающих сахарным диабетом.


Основными липидами плазмы крови человека являются триглицериды, фосфолипиды и эфиры холестерина. Эти соединения представляют собой эфиры длинноцепочечных жирных кислот и в качестве липидного компонента входят все вместе в состав липопротеинов. Жир

ные кислоты присутствуют в плазме также в свободной (неэстерифициро- ванной) форме.
Местом хранения жирных кислот служит жировая ткань, а утилизируются они в печени и мышцах, куда транспортируются в форме свободных жирных кислот (СЖК). Жирные кислоты, в особенности - пальмитиновая, олеиновая и линолевая, - откладываются в жировой ткани в виде триглицеридов. Скорость мобилизации триглицеридов определяется работой гормончувствительной липазы, активность которой возрастает под действием некоторых гормонов, таких, как норадреналин и глюкокортикоиды. Липолиз приводит к высвобождению в плазму жирных кислот и глицерина и усиливается в состоянии острого стресса, при длительном голодании и недостатке инсулина.
Триглицериды (или триацилглицериды) представляют собой эфиры жирных кислот и глицерина. Синтез триглицеридов в печени и жировой ткани осуществляется по глицерофосфатному пути, тогда как в тонком кишечнике триглицериды образуются, главным образом, за счет непосредственной эстерификации всасываемых из пищи моноглицеридов. Ресинтезируемые в клетках тонкого кишечника триглицериды выходят в кишечные лимфатические сосуды в форме хиломикронов, а затем поступают в кровоток через грудной лимфатический проток. В норме всасывается свыше 90% триглицеридов. Это означает, что ежедневно в кровь попадает 70-150 г экзогенных триглицеридов. В тонком кишечнике происходит образование и так называемых эндогенных триглицеридов, которые синтезируются из эндогенных жирных кислот, однако их главным источником является печень, откуда они секретируются в форме липопротеинов очень низкой плотности (ЛПОНП). Спектр остатков жирных кислот, обнаруживаемых в триглицеридах и ЛПОНП, в значительной степени зависит от набора жирных кислот триглицеридов, поступающих с пищей.
Два основных фосфолипида, которые присутствуют в плазме, - это фосфатидилхолин (лецитин) и сфингомиелин. Синтез фосфолипидов происходит почти во всех тканях, но главным источником фосфолипидов плазмы служит печень. Фосфолипиды являются неотъемлемым компонентом всех клеточных мембран. Между плазмой и эритроцитами постоянно происходит обмен лецитином и сфингомиелином. Оба эти фосфолипида присутствуют в плазме в качестве составных компонентов ли- попротеинов, где они играют ключевую роль, поддерживая в растворимом состоянии неполярные липиды, такие, как триглицериды и эфиры холестерина.
Холестерин - это стерин, содержащий стероидное ядро из четырех колец и гидроксильную группу. Это соединение обнаруживается в организме как в виде свободного стерина, так и в форме сложного эфира с одной из длинноцепочечных жирных кислот. Свободный холестерин -
компонент всех клеточных мембран и та основная форма, в которой холестерин присутствует в большинстве тканей. Исключение представляют кора надпочечников, плазма и атероматозные бляшки, где преобладают эфиры холестерина. Большинство тканей обладает способностью к синтезу холестерина, но в норме практически весь холестерин синтезируется в печени и дистальной части тонкого кишечника.
Ранней стадией синтеза холестерина является превращение ацетата в мевалоновую кислоту. Фермент, определяющий скорость этого процесса, называется 3-гидрокси-3-метилглутарил-коэним А-редуктаза (ГМГ-КоА-редуктаза). Активность этого фермента регулируется по принципу обратной связи с помощью конечного продукта реакции - холестерина. Основные метаболиты холестерина, - желчные кислоты,

  • синтезируются исключительно в печени. Ключевым ферментом в этом случае служит холестерин-7-альфа-гидроксилаза.
Результаты экспериментов по изучению изменений плазмаспецифи- ческой активности после введения радиоактивного холестерина свидетельствуют о существовании в организме трех пулов холестерина. Холестерин каждого из пулов обменивается с холестерином плазмы, причем скорости установления равновесия сильно различаются. Быстро обменивающийся пул представлен холестерином липопротеинов плазмы, эритроцитов, печени, кишечника и некоторых других внутренних органов и содержит 20-25 г чистого холестерина. Количество холестерина в промежуточном пуле составляет около 10-12 г. К этому пулу относится холестерин периферических тканей, таких, как кожа и жировая ткань. Медленно обменивающийся пул содержит наибольшее количество холестерина (35-37 г) и включает холестерин разных тканей, таких, как скелетные мышцы и стенки сосудов . В стационарном состоянии метаболизма поступление синтезируемого и всасываемого холестерина в быстро обменивающийся пул сбалансировано выведением холестерина путем фекальной экс-креции. Независимо от того, сколько холестерина попадает в организм с пищей, усваивается в среднем 35-40%, причем процесс всасывания опосредуется лимфатической системой. Всасывание холестерина пищи и реабсорбция жирных кислот играют важную роль в организации скорости синтеза холестерина клетками печени . Синтез желчных кислот опре-деляется эффективностью их циркуляции между печенью и тонким кишечником и поэтому увеличивается при любом воздействии, которое затрудняет их реабсорбцию.
Более двух третей холестерина плазмы эстерифицировано преимущественно линолевой и олеиновой кислотами. Эти эфиры образуются, в основном, в плазме под действием фермента лецитин-холестерин- ацил-трансферазы (ЛХАТ). Относительно небольшой вклад в этот процесс вносит также фермент тонкого кишечника и печени - АКАТ. Природа эфиров холестерина зависит в значительной степени от жирнокис
лотного состава лецитина плазмы или, иными словами, - от типа жиров в пище. В отличие от своих эфиров, свободный холестерин плазмы легко обменивается с холестерином клеточных мембран.
В норме уровень общего холестерина (ОХС) плазмы крови варьируется от 4 до 6,5 ммоль/л, но, в отличие от уровня триглицеридов, не воз- рас-тает резко после потребления жирной пищи.
Все липиды, за исключением свободных жирных кислот, попадают в плазму в форме макромолекулярных комплексов, называемых липоп- ротеинами. Эти комплексы содержат специфические белковые компоненты аполипопротеины (апопротеины или просто апо), взаимодействующие с фосфолипидами и свободным холестерином и образующие полярную наружную оболочку, которая экранирует расположенные внутри неполярные триглицериды и эфиры холестерина.
С помощью ультрацентрифугирования плазмы крови, взятой у донора после приема пищи, можно выделить шесть классов липопротеи- нов. Все они представляют собой сферические частицы, различающиеся по размеру и состоящие из смеси белков, фосфолипидов, триглицеридов, свободного и эстерифицированного холестерина, относительные количества которых варьируются в разных классах липопротеинов. Так, основная часть холестерина обнаруживается в липопротеинах низкой плотности (ЛПНП), а существенно меньшая - в ЛПОНП и липопроте- инах высокой плотности (ЛПВП). В отличие от холестерина, эндогенные триглицериды переносятся преимущественно в составе ЛПОНП. Хиломикроны служат для переноса триглицеридов в первые часы после приема пищи и в норме через 12 ч голодания полностью исчезают из плазмы. Таким образом, измерение содержания общего холестерина и триглицеридов в плазме или сыворотке крови дает сумму вкладов каждого класса липопротеинов. Изменение количества сывороточных липидов обычно отражает изменения либо в концентрации липопротеи- нов, либо в соотношении уровней липопротеинов различных классов. В норме концентрация ремнантных частиц, или липопротеинов промежуточной плотности (ЛППП), в плазме относительно низка и, как правило, их вкладом пренебрегают, но он может стать определяющим при измерении содержания холестерина и три-глицеридов в крови пациентов с некоторыми формами гиперлипидемии.
Прежде чем описывать метаболизм различных классов липопротеинов, необходимо сделать краткий обзор физических свойств как самих этих частиц, так и входящих в их состав аполипопротеинов. Липоротеины плазмы различаются по скорости флотации, гидратированной плотности, размеру и электрофоретической подвижности. В настоящее время наиболее распространена классификация липопротеинов, основанная на различиях в их плотности, что используется для разделения этих частиц методом ультрацентрифугирования. Кроме того, липопротеины суще
ственно различаются и по содержанию аполипопротеинов, или апоп- ротеинов .
Апопротеины выполняют три основные функции: 1) взаимодействуя с фосфолипидами, помогают солюбилизировать эфиры холестерина и три-глицериды; 2) регулируют реакции липидов липопротеинов с ферментами, такими, как ЛХАТ, липопротеинлипаза и печеночная липаза; 3) связываются с рецепторами на поверхности клеток, определяя, таким образом, места захвата и скорость деградации других компонентов, в частности - холестерина. Связывание апопротеинов с липидами осуществляется, главным образом, за счет гидрофобных взаимодействий между жирнокислотными цепями фосфолипидов и неполярными областями апопротеинов. Ионные взаимодействия между полярными группами головок фосфолипидов и парами противоположно заряженных аминокислот апопротеинов играют вторичную стабилизирующую роль.
Аполипопротеины семейства А, - апо А-I и апо А-II, - это основные белковые компоненты ЛПВП. Существуют данные, свидетельствующие о том, что когда оба апопротеина А находятся рядом, как это бывает в ЛПВП, апо А-II усиливает липидсвязывающие свойства апо А-I. Другая функция апо А-I - это активация фермента ЛХАТ
Апопротеин В, или апо В, отличается гетерогенностью и различиями в молекулярном весе; апо ВЮ0 обнаруживается, главным образом, в хиломикронах, ЛПОНП и ЛПНП, а апо В48 - только в хиломикронах. При этом апо ВЮ0 служит лигандом рецептора ЛПНП, апо В48 - нет.
К апопротеинам С относятся, по крайней мере, три индивидуальных апопротеина, которые являются основными компонентами ЛПОНП и минорным компонентом ЛПВП. Считается, что апо С-II активирует фермент липопротеинлипазу.
Апопротеин Е, - компонент ЛПОНП, ЛППП и ЛПВП, - поступает в плазму преимущественно в составе новосинтезированных ЛПВП. Апо Е выполняет несколько функций, в том числе - рецептор-опосредован- ный перенос холестерина между тканями и плазмой.
Из других апопротеинов следует упомянуть апо D, минорный компонент ЛПВП; апо А-IV, обнаруженный в хиломикронах кишечника; а также апо (а), один из белковых компонентов особого липопротеина (а), или ЛП (а) . В настоящее время в литературе имеются детальные обзоры современных данных по структуре и функциям аполипопротеинов .
Липопротеины отдельных классов принимают различное участие в атерогенезе, в связи с чем необходимо привести их краткую характеристику.
Хиломикроны - самые крупные липопротеиновые частицы, имеют диа-метр от 100 до 1000 нм и содержат преимущественно триглицери
ды, а также небольшие количества фосфолипидов, свободного холестерина, его эфиров и белка. Основной функцией хиломикронов является перенос пищевых триглицеридов из кишечника, где происходит их всасывание, в кровяное русло.
ЛПОНП (пре-в-липопротеины) - по структуре и составу сходны с хиломикронами, но обладают меньшими размерами, от 25 до 100 нм, и содержат меньше триглицеридов, но больше холестерина, фосфолипидов и белка. От хиломикронов ЛПОНП отличаются по месту синтеза и источнику транспортируемых триглицеридов. Так, ЛПОНП образуются, в основном, в печени и служат для переноса эндогенных триглицеридов .
Скорость образования ЛПОНП растет при увеличении потока свободных жирных кислот, поступающих в печень, а также в ситуациях, когда в печени возрастает скорость синтеза эндогенных жирных кислот, что происходит при попадании в организм большого количества углеводов.
Частицы ЛПОНП варьируются по размеру. В результате липолиза образуются ЛПОНП небольшого размера, - их называют ремнантными ЛПОНП или липопротеинами промежуточной плотности (ЛППП), - которые являются промежуточным продуктом в процессе превращения ЛПОНП в ЛПНП. При гипертриглицеридемии наблюдается возрастание не только числа, но также и размеров ЛПОНП, что, вероятно, может служить причиной другого характерного признака данного заболевания - снижения уровня ЛПНП.
ЛПНП ф-липопротеины) - главный из классов липопротеинов плазмы, переносящих холестерин. Эти частицы отличаются от своих предшественников ЛПОНП значительно более низким содержанием триглицеридов и присутствием только одного апо В100 из разнообразных апопротеинов, обнаруживаемых в ЛПОНП. Катаболизм ЛПНП зависит как от факторов среды, например - от типа потребляемых жиров, так и от генетических факторов - мутаций генов, кодирующих рецептор ЛПНП и апо В.
ЛПВП (а-липопротеины) по диапазону плотности подразделяются на подклассы ЛПВП2 и ЛПВП3. Свыше 90% белка ЛПВП представлено белком апо А. Синтезируются ЛПВП в печени и тонком кишечнике. Накопление эфиров холестерина в ретикуло-эндотелиальной системе пациентов, у которых отсутствуют ЛПВП (болезнь Танжера), говорит о том, что в норме ЛПВП играют ведущую роль в удалении тканевого холестерина.
ЛП (а) - крупнее ЛПНП, но обладают по сравнению с ними большей плотностью и имеют электрофоретическую подвижность, свойственную ЛПОНП. По липидному составу ЛП (а) не отличается от ЛПНП, но имеют больше белка, в том числе собственный апо (а) - по
лиморфный белок, обладающий высокой степенью гомологии с плаз- миногеном и содержащий большее количество углеводов. Имеются данные, что ЛП (а) образуются исключительно в печени, независимо от метаболизма ЛПОНП .
Метаболизм липопротеинов - это сложный динамический и во многом не изученный процесс, включающий в себя как разнообразные перемещения липидов и апопротеинов между отдельными классами ли- попротеинов, так и целый ряд реакций, катализируемых ферментами. Эти взаимодействия приводят, в том числе, к рецептор-опосредованно- му поступлению холестерина в клетку или к его удалению из клетки .
Здесь уместно напомнить, что функция апопротеинов не ограничивается только тем, что они образуют с липидами растворимые и, следовательно, транспортируемые кровью комплексы. Установлено, что некоторые апопротеины выполняют коэнзимную роль, активируя отдельные реакции липидного обмена. В частности, апо А-I активирует реакцию, осуществляемую ЛХАТ В ходе этой реакции, как известно, происходит эстерификация свободного холестерина в плазме крови. Имеются данные, что реакция ЛХАТ катализируется также апо С-I.
Апо С-II оказался необходимым компонентом для реакций, катализируемых липопротеинлипазами. Так как при действии липопротеин- липазы происходит расщепление триглицеридов хиломикронов и ЛПОНП, то эта реакция приобретает особое значение как начальная ступень в катаболизме названных липопротеинов .
В 1985 году американским ученым J.Goldstein и M.Brown была присуждена Нобелевская премия за открытие рецептора ЛПНП и установление причины семейной гиперхолестеринемии . Они обнаружили, что основная роль рецептора ЛПНП заключается в том, чтобы обеспечить все клетки организма доступным источником холестерина, который необходим для синтеза клеточных мембран, а определенные органы используют его также и в качестве субстрата для образования некоторых продуктов своего метаболизма, например, желчных кислот, половых гормонов, кортикостероидов. Поэтому клетки печени, половых желез и надпочечников содержат большое количество рецепторов ЛПНП. Печень, в силу своего размера, является основным местом ре- цептор-опосредованного катаболизма ЛПНП. Рецепторы ЛПНП связывают также ремнантные ЛПОНП (или ЛППП) и один из подклассов ЛПВП, имеющий белок апо-Е .
Координированная регуляция экспрессии рецептора ЛПНП и активности ГМГ-КоА-редуктазы обеспечивает функционирование гомеостатического механизма снабжения холестерином таких клеток, как гепа- тоциты, повседневно перерабатывающих большие его количества. Фармакологические средства, конкурентно ингибирующие ГМГ-КоА-ре-
дуктазу, блокируют эндогенный синтез холестерина и посредством этого стимулируют экспрессию рецептора ЛПНП, что приводит к снижению уровня холестерина ЛПНП в плазме крови.
Рецептор ЛПВП был идентифицирован в культивируемых фиброб- ластах и гладкомышечных клетках. Экспрессия этого рецептора увеличивается при нагрузке клеток холестерином. Кроме того, описаны два других рецептора липопротеинов , хотя их вклад в метаболизм липопротеинов in vivo не установлен.
В упрощенном виде внутриклеточный и тканевой метаболизм липопротеинов разных классов можно представить следующим образом. Хи- ломикроны доставляют липиды пищи в плазму крови через лимфу. Под воздействием внепеченочной липопротеинлипазы, активируемой а- по С-II, хиломикроны в плазме превращаются в ремнанты, которые захватываются рецепторами гепатоцитов, распознающими поверхностный апо-Е. Эндогенные триглицериды переносятся ЛПОНП из печени в плазму, где они, как и хиломикроны, претерпевают частичную деградацию до ремнантных ЛПОНП, или ЛППП. В свою очередь, ЛППП либо захватываются рецепторами ЛПНП, распознающими апо Е или апо ВЮ0, либо превращаются в ЛПНП, содержащие апо ВЮ0, но уже не имеющие апо Е. В этом процессе может принимать участие печеночная липаза. Катаболизм ЛПНП протекает двумя основными путями, один из которых связан с рецепторами ЛПНП, а второй - с печеночной триг- лицеридлипазой. ЛПВП имеют сложное происхождение: их липидный компонент включает или свободный холестерин и фосфолипиды, высвобождающиеся при липолизе хиломикронов и ЛПОНП, или свободный холестерин, поступающий из периферических клеток, в то время как основной апопротеин ЛПВП, апо А-I, синтезируется и в печени, и в тонком кишечнике. Новосинтезированные частицы ЛПВП в плазме представлены подклассом ЛПВП3, но, в конечном итоге, под воздействием ЛХАТ, активируемой апо А-I , они превращаются в ЛПВП2 . К сожалению, мы не располагаем пока точными данными о последовательности сборки липопротеиновых частиц, не говоря уже о механизмах этого процесса.
Таблица 1.1
Пределы колебаний содержания общего холестерина (ОХС), триглицеридов (ТГ), ХС-ЛПНП и ХС-ЛПВП в плазме крови (в ммоль/л) в норме .

Возраст, годы

ОХС

ТГ

ХС-ЛПНП

ХС-ЛПВП

0-19

3.2-5.2

0.4-1.5

1.7-3.4

1.0-1.9

20-29

3.2-5.9

0.5-2.1

1.8-4.3

0.8-1.7

30-39

3.7-6.8

0.6-3.2

2.1-4.9

0.8-1.7

40-49

4.0-7.0

0.6-3.5

2.3-5.0

0.8-1.7

50-59

4.1-7.2

0.7-3.3

2.3-5.2

0.8-1.7

Состав, строение и классификация липопротеинов крови. Роль различных классов липопротеинов в патогенезе гиперлипопротеинемий. Выполнила: Хапез А.Е. Группа:218 б Западно – Казахстанский государственный медицинский университет имени Марата Оспанова Самостоятельная работа студента


План Актуальность 1.Состав, строение, классификация и физиологическая роль липопротеинов крови. 2. Образование хиломикронов и транспорт жиров. 3. Роль различных классов липопротеинов в организме и патогенезе гиперлипопротеинемий. 4. Биохимия атеросклероза. 5. Нарушения обмена холестерина. Заключение Список использованной литературы


Актуальность Высокий уровень липопротеинов в плазме крови это фактор риска ишемической болезни сердца, атеросклероза, тромбоза и инсульта. Высокий уровень ЛП подобно высокому уровню ЛПНП предопределяет риск развития раннего атеросклероза. Изучение основных свойств липопротеинов позволит проводить более точную диагностику перечисленных заболеваний, а также поможет в их профилактике и лечении.


Состав и строение липопротеинов плазмы крови Липопротеины – комплексы липидов с белками. Все типы липопротеинов имеют сходное строение – гидрофобное ядро и гидрофильный слой на поверхности. Гидрофильный слой образован белками, которые называют апопротеинами, и амфифильными молекулами липидов-фосфолипидами и холестеролом. Гидрофильные группы этих молекул обращены к водной фазе, а гидрофобные части - к гидрофобному ядру липопротеина, в котором находятся транспортируемые липиды.


Классификация липопротеинов плазмы крови Липопротеины плазмы крови классифицируют по их плотности: хиломикроны (ХМ) липопротеины очень низкой плотности (ЛПОНП) липопротеины промежуточной плотности (ЛППП) липопротеины низкой плотности (ЛПНП) липопротеины высокой плотности (ЛПВП)




Физиологическая роль липопротеинов плазмы крови Апопротеины в составе липопротеинов выполняют не только структурную функцию, но и обеспечивают активное участие комплексов ЛП в транспорте липидов в токе крови от мест их синтеза к клеткам периферических тканей, а также обратный транспорт холестерина в печень для дальнейших метаболических превращений. Апопротеины выполняют функцию лигандов во взаимодействии ЛП со специфическими рецепторами на клеточных мембранах, регулируя тем самым гомеостаз холестерина в клетках и в организме в целом. Не меньшее значение имеет также регуляция апопротеинами активности ряда основных ферментов липидного обмена: лецитин-холестеролацилтрансферазы, липопротеинлипазы, печеночной триглицерид липазы.


Образование хиломикронов Основной апопротеин в составе ХМ - белок апоВ-48. Этот белок закодирован в том же гене, что и белок ЛПОНП - В-100, который синтезируется в печени. Белок апоВ-48 синтезируется в шероховатом ЭР и там же гликозилируется. Затем в аппарате Гольджи происходит формирование ХМ, называемых "незрелыми". По механизму экзоцитоза они выделяются в хилус, образующийся в лимфатической системе кишечных ворсинок, и через главный грудной лимфатический проток попадают в кровь. В лимфе и крови с ЛПВП на ХМ переносятся апопротеины Е (апоЕ) и С-П (апоС-П); ХМ превращаются в "зрелые".


Транспорт жиров хиломикронами В крови триацилглицеролы, входящие в состав зрелых ХМ, гидролизуются ферментом липопротеин-липазой, или ЛП- липазой. ЛП-липаза гидролизует молекулы жиров до глицерола и 3 молекул жирных кислот. В результате действия ЛП-липазы на жиры ХМ образуются жирные кислоты и глицерол. Основная масса жирных кислот проникает в ткани. В жировой ткани в абсорбтивный период жирные кислоты депонируются в виде триацилглицеролов, в сердечной мышце и работающих скелетных мышцах используются как источник энергии. Другой продукт гидролиза жиров, глицерол, растворим в крови, транспортируется в печень, где в абсорбтивный период может быть использован для синтеза жиров.



Роль различных классов липопротеинов в организме и патогенезе гиперлипопротеинемий Гипергипопротеинемия (ГЛП) – увеличение какого-то класса или классов ЛП в крови. Согласно варианту ВОЗ, различают следующие типы ГЛП. Тип I – гиперхиломикронемия. Основные изменения следующие: высокое содержание ХМ, нормальное или слегка повышенное содержание ЛПОНП; резко повышенный уровень триглицеридов в сыворотке крови. Клинически это состояние проявляется ксантома-тозом. Тип II делят на два подтипа: тип IIа – гипер-β-гипопротеинемия с характерным высоким содержанием в крови ЛПНП и тип IIб – гипер-β- липо-протеинемия с высоким содержанием одновременно двух классов липопро-теинов (ЛПНП, ЛПОНП). При типе II отмечается высокое, а в некоторых случаях очень высокое содержание холестерина в плазме крови. Уровень триглицеридов в крови может быть либо нормальным (тип аIIа), либо повышенным (тип IIб). Клинически проявляется атеросклеротическими нарушениями, нередко развивается ишемическая болезнь сердца (ИБС).


Роль различных классов липопротеинов в организме и патогенезе гиперлипопротеинемий Тип III –тис-β-гипопротеинемия. В сыворотке крови появляются липопротеины с необычно высоким содержанием холестерина и высокой электрофоретической подвижностью («флотирующие» β- липопротеины). Они накапливаются в крови вследствие нарушения превращения ЛПОНП в ЛПНП. Этот тип ГЛП часто сочетается с различными проявлениями атеросклероза, в том числе с ИБС и поражением сосудов ног. Тип IV –гиперпре-β-гипопротеинемия. Характерны повышение уровня ЛПОНП, нормальное содержание ЛПНП, отсутствие ХМ; увеличение уровня триглицеридов при нормальном или слегка повышенном уровне холестерина. Клинически этот тип сочетается с диабетом, ожирением, ИБС. Тип V –гиперпре-β-гипопротеинемия и гиперхиломикронемия. Наблюдаются повышение уровня ЛПОНП, наличие ХМ. Клинически проявляется ксантоматозом, иногда сочетается со скрытым диабетом. Ишемической болезни сердца при данном типе ГЛП не наблюдается.


Биохимия атеросклероза Одна из основных причин развития атеросклероза - нарушение баланса между поступлением холестерола с пищей, его синтезом и выведением из организма. Стадия 1 Процесс начинается с повреждения эндотелия сосудов за счёт изменённой структуры ЛПНП. Повреждение провоцируется свободными радикалами, образующимися в процессе метаболизма или поступающими извне. В ЛПНП изменяется не только структура самих липидов, но и нарушается структура апопротеинов. Окисленные ЛПНП захватываются макрофагами через скевенджер-рецепторы. Этот процесс не регулируется количеством поглощённого холестерола, как в случае его поступления в клетки через специфические рецепторы, поэтому макрофаги перегружаются холестеролом и превращаются в "пенистые клетки", которые проникают в субэндотелиальное пространство. Это приводит к образованию жировых полосок в стенке кровеносных сосудов.


Биохимия атеросклероза Стадия 2 На этой стадии эндотелий сосудов может сохранять свою структуру. При увеличении количества "пенистых клеток" происходит повреждение эндотелия сосудов. В норме клетки эндотелия секретируют простагландин I 2 (простациклин I 2), который ингибирует агрегацию тромбоцитов. При повреждении клеток эндотелия тромбоциты активируются. Во-первых, они секретируют тромбоксан А 2, который стимулирует агрегацию тромбоцитов, что может привести к образованию тромба в области атеросклеротической бляшки; во- вторых, тромбоциты начинают продуцировать пептид - тромбоцитарный фактор роста, стимулирующий пролиферацию ГМК. ГМК мигрируют из медиального слоя во внутренний слой артериальной стенки и способствуют таким образом росту бляшки.


Биохимия атеросклероза Стадия 3 Далее происходит прорастание бляшки фиброзной тканью (коллагеном, эластином); клетки под фиброзной оболочкой некротизируются, а холестерол откладывается в межклеточном пространстве. На этой стадии в центре бляшки образуются даже холестериновые кристаллы. Стадия 4 Бляшка пропитывается солями кальция и становится очень плотной. В области бляшки часто образуются тромбы, перекрывающие просвет сосуда, что приводит к острому нарушению кровообращения в соответствующем участке ткани и развитию инфаркта. Чаще всего атеросклеротические бляшки развиваются в артериях миокарда, поэтому наиболее распространённое заболевание, развивающееся в результате атеросклероза, - инфаркт миокарда.


Нарушения обмена холестерина Гиперхолестеролемия – превышение нормальной концентрации холестерина в крови. Гиперхолестеролемия часто развивается вследствие избыточного поступления холестерола с пищей, а также углеводов и жиров. Гиперкалорийное питание - один из распространённых факторов развития гиперхолестеролемии, так как для синтеза холестерола необходимы только ацетил-КоА, АТФ и NADPH. Все эти субстраты образуются при окислении глюкозы и жирных кислот, поэтому избыточное поступление этих компонентов пищи способствует развитию гиперхолестеролемии. В норме поступление холестерола с пищей снижает синтез собственного холестерола в печени, однако с возрастом эффективность регуляции у многих людей снижается.


Нарушения обмена холестерина Любой дефект рецептора ЛПНП или белка апоВ-100, взаимодействующего с ним, приводит к развитию наиболее распространённого наследственного заболевания - семейной гиперхолестеролемии. Причиной этого аутосомно-доминантного заболевания выступают мутации в гене рецептора ЛПНП. Гетерозиготы, имеющие один нормальный ген, а другой дефектный, встречаются с частотой 1:500 человек. Гомозиготы встречаются редко - 1: человек. Концентрации холестерола и ЛПНП в крови таких больных уже в раннем детском возрасте увеличены в 5-6 раз. ЛПНП захватываются макрофагами путём фагоцитоза. Макрофаги, нагруженные избытком холестерола и других лигшдов, содержащихся в ЛПНП, откладываются в коже и даже сухожилиях, образуя так называемые ксантомы. Холестерол откладывается также и в стенках артерий, образуя атеросклеротические бляшки. Такие дети без экстренных мер лечения погибают в возрасте 5-6 лет.




Список использованной литературы: 1. Комаров Ф.И.,Коровкин Б.Ф. и Меньшиков В.В. Биохимические исследования в клинике,с. 407, Л., Мецлер Д. Биохимия, пер. с англ., т. 2, М., Николаев А.Я. Биологическая химия, М., Биохимия: Учеб. для вузов, Под ред. Е.С. Северина., 2003



mob_info