Какой 1 признак равенства треугольников. Первый признак равенства треугольников: формулировка и доказательство (7 класс). Простые истины о треугольниках

Теорема 3.1 (признак равенства треугольников по двум сторонам и углу между ними).Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Доказательство. Пусть у треугольников ABC и A 1 B 1 C 1 А= А 1 , AB = A 1 B 1 , АС = А 1 С 1 (рис. 44). Докажем, чтотреугольники равны.

Пусть А 1 В 2 С 2 —треугольник, равный треугольнику ABC, с вершиной В 2 на луче A 1 B 1 и вершиной С 2 в той же полуплоскости относительно прямой A 1 B 1 , где лежит вершина C 1 (рис. 45, а).

Так как A 1 B 1 =A 1 B 2 , то вершина B 2 совпадает с вершиной В 1 , (рис. 45,6). Так как B 1 A 1 C 1 =B 2 A 1 C 2 , то луч А 1 С 2 совпадает с лучом A 1 C 1 (рис. 45, в). Так как A 1 C 1 =A 1 C 2 , то вершина С 2 совпадает с вершиной C 1 (рис. 45, г).

Итак, треугольник A 1 B 1 C 1 совпадает с треугольником А 1 В 2 С 2 , значит, равен треугольнику ABC. Теорема доказана.



Задача (1). Отрезки АВ и CD пересекаются в точке О, которая является серединой каждого из них. Чему равен отрезок BD, если отрезок АС = 10 м?


Решение . Треугольники АОС и BOD равны по первому признаку равенства треугольников (рис. 46).

У них углы АОС и BOD равны как вертикальные, а OA=ОВ и OC=OD потому, что точка О является серединой отрезков АВ и CD. Из равенства треугольников АОС и BOD следует равенство их сторон АС и BD. А так как по условию задачи АС = 10 м, то и BD=10 м.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Конспект урока

«Первый признак равенства треугольников»

(урок №1, 7 класс, по учебнику Атанасяна Л.С.)

Цели урока:

Обучающая:

Ввести понятие теоремы и доказательства теоремы;

Доказать первый признак равенства треугольников;

Научить решать задачи на применение первого признака равенства треугольников.

Развивающая:

Выработать умения сопоставлять, обобщать полученные выводы, оценивать влияние условий на результат;

Развивать логическое мышление учащихся.

Воспитательная:

Выработать умение анализировать данные, выводить логические следствия из данных предпосылок, умение делать выводы;

Выработать умение концентрировать внимание, сосредотачиваться.

Методическая цель: опробовать новый подход к формулировке теоремы, выяснить уловят ли учащиеся момент, когда условия становятся достаточными.

Тип урока: комбинированный.

Оборудование: компьютор, экран, проектор, презентация, линейка, треугольник,

цветные мелки.

Ход урока

Организационный момент : (2 мин)

На предыдущем уроке мы приступили к изучению главы «Треугольники». Выяснили, какие две фигуры, в частности два треугольника называются равными. Сегодня мы выясним, можно ли установить равенство двух фигур не проводя фактического наложения одной на другую, а сравнивая только некоторые элементы этих фигур, в частности как сравнить треугольники.

Повторение пройденного материала: (6 мин)

Повторим материал прошлого урока.

Теоретический опрос по вопросам:

объясните, какая фигура называется треугольником;

начертите треугольник и покажите его стороны вершины и углы;

что такое периметр треугольника?

какие треугольники называются равными?

Каждому учащемуся выдается конвертик, в котором находится 6-7 бумажных треугольников; учащимся предлагается найти среди них равные.

Когда поиск закончен, спросить одного из учеников, как он нашел эту пару. Ученик расскажет, как он накладывал один треугольник на другой.

Выполнение практического задания с последующей устной проверкой:

№1: На доске(или слайде) начерчены ∆DEK, ∆MNP.

Рисунок 1

Назовите углы:

а) ∆DEK, прилежащие к стороне ЕК;

б) ∆MNP, прилежащие к стороне MN.

Назовите угол:

а) ∆DEK, заключенный между сторонами DE и DК;

б) ∆MNP, заключенный между сторонами NP и РМ.

Между какими сторонами:

а) ∆DEK заключен угол К;

б) ∆MNP заключен угол N?

Рисунок 2

Вызываю ученика к доске, он сопровождает свой ответ демонстрацией на чертежах и записью на доске.

3. Изучение нового материала: (16 мин)

Чтобы установить равенство двух треугольников, надо их совмещать или проверить равенство соответствующих сторон и соответствующих углов. Шесть равенств! Но иногда ни совместить, ни проверить все шесть равенств нет возможности. Да это и не нужно, оказывается достаточно установить лишь часть из них. Наша цель - определить, какие из шести этих равенств действительно необходимы.

Итак, перед нами проблема.

Ее решением и займемся.

Рисунок 3

Оказывается справедливо утверждение « Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны». Это утверждение называется «Первый признак равенства треугольников».

А в математике каждое утверждение, справедливость которого устанавливается путем рассуждений, называется теоремой , а сами рассуждения называются доказательством теоремы.

Какие теоремы нам уже известны?

Свойство смежных углов и свойство вертикальных углов.

Почему же теорема о равенстве треугольников называется признаком?

Признак (по В.Далю) - это знак, отличие, все, почему узнают что-либо. Увидев морозный узор на окне, можно, не выходя из дома, сказать, что на улице холодно. Чтобы узнать, делится ли число 7859467 на 9, не обязательно выполнять деление: можно воспользоваться признаком делимости.

Признак дает возможность устанавливать равенство двух треугольников, не проводя фактического наложения одного из них на другой, а сравнивая только некоторые элементы треугольников.

Любая теорема состоит из условия и заключения. Как вы понимаете, что может означать словосочетание «условие теоремы», а что - «заключение теоремы»?

Условие - это уже известные факты, о которых говориться в теореме, а заключение - это то, что нужно доказать.

Выделите условие теоремы «Первого признака равенства треугольников».

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника.

Выделите заключение теоремы.

То такие треугольники равны.

Итак, докажем первый признак равенства треугольников:

А теперь рассмотрим еще один вопрос. Но сначала послушайте внимательно формулировку: Если две стороны и угол одного треугольника соответственно равны двум сторонам и углу другого треугольника, то такие треугольники равны. Как вы думаете, верно ли это утверждение?

Рассмотрим ∆ АВС и ∆АDС.

Рисунок 4

Сторона АВ треугольника АВС равна стороне АD треугольника АDС, сторона АС - общая, и С - общий. Но треугольники не равны. Итак, условие утверждения выполнено, а заключение - нет. Значит утверждение не верно. Обратите особое внимание, на то, что условие «между ними» необходимо!

4. Закрепление нового материала : (10 мин)

Рассмотрим, как же можно применить теорему для решения задач.

Устное решение задач по готовым чертежам, заранее заготовленным на обратной стороне доски или на слайде.

№2:

Для решения каждой задачи вызываю ученика к доске, где он комментирует решение, показывая упомянутые элементы на чертеже. Остальные учащиеся слушают, поправляют, дополняют ответ, если в этом есть необходимость.

Акцентирую внимание учащихся на обязательности содержательной ссылки «треугольники равны по двум сторонам и углу между ними», а не формальной «треугольники равны по первому признаку», выясняю всем ли был понятен ход решения, если возникли вопросы, сама отвечаю на них.

Если в задаче понадобится доказать, что два треугольника равны, чем следует воспользоваться: определением или теоремой?

Конечно, теоремой. Согласно определению нужно треугольники совмещать, а согласно теореме - проверить три равенства.

На рис. АВ = АС, 1 = 2.

а) Докажите, что треугольники АВD и АСD равны;

б) найдите ВD и АВ, если АС=15 см, DC=5 см.

Дано: АВ = АС, 1 = 2,

АС=15 см, DC=5 см.

Доказать:

∆АВD = ∆АСD.

Найти: ВD, АВ.

Доказательство: Прежде чем оформить решение на доске, предлагаю ученикам устно решить задачу. Один ученик комментирует доказательство. Другой - нахождение длин отрезков. А затем записываем решение задачи: я на доске, ученики в тетради.

Возможная запись решения:

Доказательство:

Рассмотрим ∆АВD и ∆АСD.

АВ = АС (по усл.)

АD - общая сторона ∆АВD = ∆АСD (по двум

1 = 2 (по усл.) сторонам и углу между ними)

Словестный комментарий: треугольники АВD и АСD равны по двум сторонам и углу между ними, первый признак равенства треугольников, в котором говориться: «Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.»

ВD =DC =5 см, АВ = АС = 15 см.(как соответственные элементы равных треугольников).

Ответ: ВD =5 см, АВ = 15см.

Выясняю, не возникли ли вопросы по ходу решения.

5. Итог урока: (4 мин)

Итак, давайте повторим:

Какие треугольники называются равными?

Что называется теоремой?

Что называется доказательством теоремы?

Какую теорему мы сегодня доказали? Сформулируйте ее.

Почему теорема называется признаком?

Ученики отвечают на вопросы.

Выставляю оценки за работу на уроке с комментарием.

6. Домашнее задание: (2 мин)

П 15. Вопросы 3 -4 стр. 49-50. №93, 95.

№93. Отрезки АЕ и DC пересекаются в точке В, являющейся серединой каждого из них. А) Докажите, что треугольники АВС и ЕВD равны; б) найдите углы А и С треугольника АВС, если в треугольнике ВDЕ D=470, Е= 420.

№95. На рис. ВС=АD, 1 = 2, а) Докажите, что треугольники АВС и СDА равны; б)Найдите АВ и ВС, если АD =17см, DС=14см.

Список литературы:

Атанасян Л.С., Бутузов В.Ф., и др. Геометрия 7-9 кл. Учебник для 7-9 классов средней школы. - М.: Просвещение, 2006.

Атанасян Л.С., Бутузов В.Ф. и др. Изучение геометрии в 7-9 классах. Методические рекомендации к учебнику. - М.: Просвещение, 2000.

Ковалева Г.И., Мазурова Н.И. Тесты для текущего и обобщающего контроля. Издательство «Учитель» 2008. .

Амелькин В.В., Рабцевич Т.И. Школьная геометрия в чертежах и формулах. 2008.

В этой статье мы расскажем, как можно сформулировать и доказать первый признак равенства треугольников , который проходят в 7 классе.

Формулировка первого признака равенства треугольников

«Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то эти треугольники равны.»

Сокращенно его называют равенство «по двум сторонам и углу между ними».

Прежде чем перейти к необходимо вспомнить, что называют треугольником и в каком случае можно утверждать, что два треугольника равны.

Что такое треугольник и когда они считаются равными?

Треугольник – это геометрическая фигура из трёх отрезков, соединяющих три точки (при условии, что они не лежат на одной прямой. Эти точки считаются вершинами треугольника. А соединяющие их отрезки – сторонами ).

На рисунке 1 представлен треугольник ABС. Который имеет три вершины (А, В и С). И стороны – АВ, АС и ВС.

Рисунок 1

Треугольники считаются равными, когда все их стороны и углы соответственно равны друг другу (в случае, когда равны лишь углы, а стороны пропорциональны, треугольники называются подобными ). Таким образом очевидно, что равные треугольники можно наложить друг на друга – и они полностью совпадут.

Доказательство первого признака равенства треугольников

Дано:

Два треугольника: ABC и DEF (рисунок 2).

Рисунок 2

По условию теоремы две пары отрезков этих треугольников равны между собой (АС = FD и СВ = EF). Углы между отрезками также равны (т.е. ∠АСВ = ∠EFD).

Доказать , что треугольник ABC равен треугольнику DEF.

Доказательство:

  1. Поскольку имеется равенство углов (∠АСВ = ∠EFD), треугольники можно наложить друг на друга, так чтобы вершина С совпадала с вершиной F.
  2. При этом отрезки СА и СВ наложатся на отрезки FE и FD.
  3. А поскольку отрезки двух треугольников равны между собой (АС = FD и СВ = EF по условию), то отрезок АВ также совпадёт со стороной ED.
  4. Это в свою очередь даст совмещение вершин А и D, В и Е.
  5. Следовательно, треугольники полностью совместятся, а значит, они равны.

Теорема доказана.

1) по двум сторонам и углу между ними

Доказательство:

Пусть у треугольников АВС и А 1 В 1 С 1 угол A равен углу А 1 , АВ равно А 1 В 1, АС равно А 1 С 1 . Докажем, что треугольники равны.

Наложим треугольник ABC (либо симметричный ему) на треугольник A 1 B 1 C 1 так, чтобы угол A совместился с углом A 1 . Так как АВ=А 1 В 1 , а АС=А 1 С 1 , то B совпадёт с В 1 , а C совпадёт с С 1. Значит, треугольник А 1 В 1 С 1 совпадает с треугольником АВС, а следовательно, равен треугольнику АВС.

Теорема доказана.

2) по стороне и прилежащим к ней углам

Доказательство:

ПустьАВС и А 1 В 1 С 1 - два треугольника, у которых АВ равно А 1 В 1, угол А равен углу А 1 , и угол В равен углу В 1 . Докажем, что они равны.

Наложим треугольник ABC (либо симметричный ему) на треугольник A 1 B 1 C 1 так, чтобы AB совпало с A 1 B 1. Так как ∠ВАС =∠В 1 А 1 С 1 и ∠АВС=∠А 1 В 1 С 1 , то луч АС совпадёт с А 1 С 1 , а ВС совпадёт с В 1 С 1 . Отсюда следует, что вершина C совпадёт с С 1. Значит, треугольник А 1 В 1 С 1 совпадает с треугольником АВС, а следовательно, равен треугольнику АВС.

Теорема доказана.

3) по трём сторонам

Доказательство :

Рассмотрим треугольники ABC и A l B l C 1, у которых АВ=А 1 В 1 , BC = B l C 1 СА=С 1 А 1. Докажем, что ΔАВС =ΔA 1 B 1 C 1 .

Приложим треугольник ABC (либо симметричный ему) к треугольнику A 1 B 1 C 1 так, чтобы вершина А совместилась с вершиной A 1 , вершина В — с вершиной В 1 , а вершины С и С 1 , оказались по разные стороны от прямой А 1 В 1 . Рассмотрим 3 случая:

1) Луч С 1 С про-ходит внутри угла А 1 С 1 В 1 . Так как по условию теоремы стороны АС и A 1 C 1 , ВС и В 1 С 1 равны, то треугольники A 1 C 1 C и В 1 С 1 С — равнобедренные . По теореме о свойстве углов равнобедренного треугольника ∠1 = ∠2, ∠3 = ∠4, поэтому ∠ACB=∠A 1 C 1 B 1 .

2) Луч С 1 С совпадает с одной из сторон этого угла. A лежит на CC 1 . AC=A 1 C 1 , BC=B 1 C 1 , C 1 BC - равнобедренный , ∠ACB=∠A 1 C 1 B 1 .

3) Луч C 1 C проходит вне угла А 1 С 1 В 1 . AC=A 1 C 1 , BC=B 1 C 1 , значит, ∠1 = ∠2, ∠1+∠3 = ∠2+∠4, ∠ACB=∠A 1 C 1 B 1 .

Итак, AC=A 1 C 1 , BC=B 1 C 1 , ∠C=∠C 1 . Следовательно, треугольники ABC и A 1 B 1 C 1 равны по
первому признаку равенства треугольников.

Теорема доказана.

2. Деление отрезка на n равных частей.

Провести луч через A, отложить на нём n равных отрезков. Через B и A n провести прямую и к ней параллельные через точки A 1 - A n -1. Отметим их точки пересечения с AB. Получим n отрезков, которые равны по теореме Фалеса.

Теорема Фалеса. Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.


Доказательство. AB=CD

1. Проведём через точки A и C прямые, параллельные другой стороне угла. Получим два параллелограмма AB 2 B 1 A 1 и CD 2 D 1 C 1 . Согласно свойству параллелограмма : AB 2 = A 1 B 1 и CD 2 = C 1 D 1 .

2. ΔABB 2 =ΔCDD 2 ABB 2 CDD 2 BAB 2 DCD 2 и равны на основании второго признака равенства треугольников:
AB = CD согласно условию теоремы,
как соответственные, образовавшиеся при пересечении параллельных BB 1 и DD 1 прямой BD.

3. Аналогично каждый из углов и оказывается равным углу с вершиной в точке пересечения секущих. AB 2 = CD 2 как соответственные элементы в равных треугольниках.

4. A 1 B 1 = AB 2 = CD 2 = C 1 D 1

При решении геометрических задач полезно следовать такому алгоритму. Во время чтения условия задачи необходимо

  • Сделать чертеж. Чертеж должен максимально соответствовать условию задачи, так его основная задача помочь найти ход решения
  • Нанести все данные из условия задачи на чертеж
  • Выписать все геометрические понятия, которые встречаются в задаче
  • Вспомнить все теоремы, которые относятся к этим понятию
  • Нанести на чертеж все соотношения между элементами геометрической фигуры, которые следуют из этих теорем

Например, если в задаче встречается слова биссектриса угла треугольника, нужно вспомнить определение и свойства биссектрисы и обозначить на чертеже равные или пропорциональные отрезки и углы.

В этой статье вы найдете основные свойства треугольника, которые необходимо знать для успешного решения задач.

ТРЕУГОЛЬНИК.

Площадь треугольника.

1. ,

здесь - произвольная сторона треугольника, - высота, опущенная на эту сторону.


2. ,

здесь и - произвольные стороны треугольника, - угол между этими сторонами:

3. Формула Герона:

Здесь - длины сторон треугольника, - полупериметр треугольника,

4. ,

здесь - полупериметр треугольника, - радиус вписанной окружности.


Пусть - длины отрезков касательных.


Тогда формулу Герона можно записать в таком виде:

5.

6. ,

здесь - длины сторон треугольника, - радиус описанной окружности.

Если на стороне треугольника взята точка, которая делит эту сторону в отношении m:n, то отрезок, соединяющий эту точку с вершиной противолежащего угла делит треугольник на два треугольника, площади которых относятся как m:n:


Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Медиана треугольника

Это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины.


Точка пересечения медиан правильного треугольника делит медиану на два отрезка, меньший из которых равен радиусу вписанной окружности, а больший - радиусу описанной окружности.

Радиус описанной окружности в два раза больше радиуса вписанной окружности: R=2r

Длина медианы произвольного треугольника

,

здесь - медиана, проведенная к стороне , - длины сторон треугольника.

Биссектриса треугольника

Это отрезок биссектрисы любого угла треугольника, соединяющий вершину этого угла с противоположной стороной.

Биссектриса треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам:

Биссектрисы треугольника пересекаются в одной точке, которая является центром вписанной окружности.

Все точки биссектрисы угла равноудалены от сторон угла.

Высота треугольника

Это отрезок перпендикуляра, опущенный из вершины треугольника на противоположную сторону, или ее продолжение. В тупоугольном треугольнике высота, проведенная из вершины острого угла лежит вне треугольника.


Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.

Чтобы найти высоту треугольника , проведенную к стороне , нужно любым доступным способом найти его площадь, а затем воспользоваться формулой:

Центр окружности, описанной около треугольника , лежит в точке пересечения серединных перпендикуляров, проведенных к сторонам треугольника.

Радиус описанной окружности треугольника можно найти по таким формулам:

Здесь - длины сторон треугольника, - площадь треугольника.

,

где - длина стороны треугольника, - противолежащий угол. (Эта формула вытекает из теоремы синусов).

Неравенство треугольника

Каждая сторона треугольника меньше суммы и больше разности двух других.

Сумма длин любых двух сторон всегда больше длины третьей стороны:

Напротив большей стороны лежит больший угол; напротив большего угла лежит большая сторона:

Если , то и наоборот.

Теорема синусов:

стороны треугольника пропорциональны синусам противолежащих углов:


Теорема косинусов:

квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:

Прямоугольный треугольник

- это треугольник, один из углов которого равен 90°.

Сумма острых углов прямоугольного треугольника равна 90°.

Гипотенуза - это сторона, которая лежит против угла 90°. Гипотенуза является наибольшей стороной.

Теорема Пифагора:

квадрат гипотенузы равен сумме квадратов катетов :

Радиус окружности, вписанной в прямоугольный треугольник, равен

,

здесь - радиус вписанной окружности, - катеты, - гипотенуза:


Центр окружности, описанной около прямоугольного треугольника лежит в середине гипотенузы:


Медиана прямоугольного треугольника, проведенная к гипотенузе , равна половине гипотенузы.

Определение синуса, косинуса, тангенса и котангенса прямоугольного треугольника смотрите

Соотношение элементов в прямоугольном треугольнике:

Квадрат высоты прямоугольного треугольника, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу:

Квадрат катета равен произведению гипотенузы на проекцию катета на гипотенузу:


Катет, лежащий против угла равен половине гипотенузы:

Равнобедренный треугольник.

Биссектриса равнобедренного треугольника, проведенная к основанию является медианой и высотой.

В равнобедренном треугольнике углы при основании равны.

Угол при вершине.

И - боковые стороны,

И - углы при основании.

Высота, биссектриса и медиана.

Внимание! Высота, биссектриса и медиана, проведенные к боковой стороне не совпадают.

Правильный треугольник

(или равносторонний треугольник ) - это треугольник, все стороны и углы которого равны между собой.

Площадь правильного треугольника равна

где - длина стороны треугольника.

Центр окружности, вписанной в правильный треугольник , совпадает с центром окружности, описанной около правильного треугольника и лежит в точке пересечения медиан.

Точка пересечения медиан правильного треугольника делит медиану на два отрезка, меньший из которых равен радиусу вписанной окружности, а больший - радиусу описанной окружности.

Если один из углов равнобедренного треугольника равен 60°, то этот треугольник правильный.

Средняя линия треугольника

Это отрезок, соединяющий середины двух сторон.

На рисунке DE - средняя линия треугольника ABC.

Средняя линия треугольника параллельна третьей стороне и равна ее половине: DE||AC, AC=2DE

Внешний угол треугольника

Это угол, смежный какому либо углу треугольника.

Внешний угол треугольника равен сумме двух углов, не смежных с ним.


Тригонометрические функции внешнего угла:

Признаки равенства треугольников:

1 . Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.


2 . Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.


3 Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.


Важно: поскольку в прямоугольном треугольнике два угла заведомо равны, то для равенства двух прямоугольных треугольников требуется равенство всего двух элементов: двух сторон, или стороны и острого угла.

Признаки подобия треугольников:

1 . Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, заключенные между этими сторонами равны, то эти треугольники подобны.

2 . Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то эти треугольники подобны.

3 . Если два угла одного треугольника равны двум углам другого треугольника, то эти треугольники подобны.

Важно: в подобных треугольниках сходственные стороны лежат против равных углов.

Теорема Менелая

Пусть прямая пересекает треугольник , причем – точка ее пересечения со стороной , – точка ее пересечения со стороной , и – точка ее пересечения с продолжением стороны . Тогда



mob_info