Общая формула углеводов химия. Лекция Углеводы. Химические свойства. II. По типу карбонильной группы

Углеводы наряду с белками и липидами являются важнейшими химическими соединениями живых организмов. В организме животных и человека углеводы выполняют весьма важные функции: прежде всего энергетическую (главный вид клеточного топлива), структурную (обязательный компонент большинства внутриклеточных структур), защитную (велико значение полисахаридов в поддержании иммунитета).

Углеводы также используются для синтеза нуклеиновых кислот (рибоза, дезоксирибоза), они являются составными компонентами нуклеотидных коферментов, играющих исключительно важную роль в метаболизме живых существ. В последнее время все большее внимание стали привлекать сложные смешанные биополимеры, содержащие углеводы. К таким смешанным биополимерам относятся, помимо нуклеиновых кислот, гликопептиды и гликопротеиды, гликолипиды и липополисахариды, гликолипопротеиды и т. д. Эти вещества выполняют сложные и важные функции в организме.

В составе тела человека и животных углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды. В растительных организмах на долю углеводов приходится до 80% сухой массы, поэтому в целом в биосфере углеводов больше, чем всех других органических соединений, вместе взятых.

Впервые термин "углеводы" был предложен профессором Дерптского (ныне Тартуского) университета К. Шмидтом в 1844 г. В то время предполагали, что все углеводы имеют общую формулу C m (Н 2 O) n , т.е. углерод + вода. Отсюда и название "углеводы". Например, глюкоза и фруктоза имеют формулу С 6 (Н 2 О) 6 , тростниковый сахар (сахароза) - С 12 (Н 2 О) 11 , крахмал - [С 6 (Н 2 О) 5 ] n и т. д. В дальнейшем же оказалось, что ряд соединений, принадлежащих по своим свойствам к классу углеводов, содержат водород и кислород в несколько иной пропорции, чем указано в общей формуле (например, дезоксирибоза - С 5 Н 10 О 4 . В 1927 г. Международная комиссия по реформе химической номенклатуры предложила термин "углеводы" заменить термином "глициды", однако он не получил широкого распространения. Старое название "углеводы" укоренилось и прочно удерживается в науке, являясь общепризнанным.

Необходимо отметить, что химия углеводов занимает одно из ведущих мест в истории развития органической химии. Тростниковый сахар можно считать первым органическим соединением, выделенным в химически чистом виде. Произведенный в 1861 г. А. М. Бутлеровым синтез (вне организма) углеводов из формальдегида явился первым синтезом одного из трех основных веществ (белки, липиды, углеводы), входящих в состав живых организмов. Химическая структура простейших сахаров была выяснена в конце XIX века в результате фундаментальных исследований немецких ученых Г. Клиани и Э. Фишера. Значительный вклад в изучение сахаров внесли отечественные ученые А. А. Колли, П. П. Шорыгин и др. В 20-е годы нынешнего столетия работами английского исследователя У. Хеуорса были заложены основы структурной химии полисахаридов. Со второй половины XX века происходит стремительное развитие химии и биохимии углеводов, обусловленное их важным биологическим значением.

Согласно принятой в настоящее время классификации, углеводы подразделяются на три основные группы: моносахариды, олигосахариды и полисахариды.

Моносахариды можно рассматривать как производные многоатомных спиртов, содержащие карбонильную (альдегидную или кетонную) группу. Если карбонильная группа находится в конце цепи, то моносахарид представляет собой альдегид и называется альдозой; при любом другом положении этой группы моносахарид является кетоном и называется кетозой.

Простейшими представителями моносахаридов являются триозы: глицеральдегид и дигидроксиацетон. При окислении первичной спиртовой группы трехатомного спирта - глицерина - образуется глицеральдегид (альдоза), а окисление вторичной спиртовой группы приводит к образованию дигидроксиацетона (кетоза):

Стереоизомерия моносахаридов . Все моносахариды содержат один или более асимметричных атомов углерода: альдотриозы - 1 центр асимметрии, альдотетрозы - 2, альдопентозы - 3, альдогексозы - 4 и т. д. Кетозы содержат на один асимметричный атом меньше, чем альдозы с тем же числом углеродных атомов. Следовательно, кетотриоза - дигидроксиацетон - не содержит асимметричных атомов углерода. Все же остальные моносахариды могут существовать в виде различных стереоизомеров. Для обозначения стереоизомеров удобны проекционные формулы, предложенные Э. Фишером. Для получения проекционной формулы углеродную цепь моносахарида располагают по вертикали с альдегидной (или кетонной) группой в верхней части цепи, а сама цепь должна иметь форму полукольца, обращенного выпуклостью к наблюдателю (рис. 79).

Общее число стереоизомеров для любого моносахарида выражается формулой: N = 2 n , где N - число стереоизомеров, а n - число асимметричных атомов углерода. Как уже отмечалось, глицеральдегид содержит только один асимметричный атом углерода и поэтому может существовать в виде двух различных стереоизомеров.

Тот изомер глицеральдегида, у которого при проекции модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны, принято считать D-глицеральдегидом, а зеркальное отражение - L-глицеральдегидом:

Альдогексозы содержат четыре асимметричных атома углерода и могут существовать в виде 2 4 = 16 стереоизомеров, представителем которых, например, является глюкоза. Для альдопентоз и альдотетроз число стереоизомеров равно 2 3 = 8 и 2 2 = 4 соответственно.

Все изомеры моносахаридов подразделяются на D- и L-формы (D- и L-конфигурация) по сходству расположения атомных групп у последнего центра асимметрии с расположением групп у D- и L-глицеральдегида. Природные гексозы - глюкоза, фруктоза, манноза и галактоза, принадлежат, как правило, по стереохимической конфигурации к соединениям D-ряда.

Известно также, что природные моносахариды обладают оптической активностью. Способность вращать плоскость поляризованного луча света - одна из важнейших особенностей веществ (в том числе моносахаридов), молекулы которых имеют асимметричный атом углерода или же асимметричны в целом. Свойство вращать плоскость поляризованного луча вправо обозначают знаком (+), а в противоположную сторону - знаком (-). Так, D-глицеральдегид вращает плоскость поляризованного луча вправо, т. е. D-глицеральдегид является D(+)-альдотриозой, а L-глицеральдегид - L(-)-альдотриозой. Однако следует помнить, что направление угла вращения поляризованного луча, которое определяется асимметрией молекулы в целом, заранее не предсказуемо. Моносахариды, относящиеся по стереохимической конфигурации к D-ряду, могут быть левовращающими. Так, обычная форма глюкозы, встречающаяся в природе, является правовращающей, а обычная форма фруктозы - левовращающей.

Циклические (полуацетальные) формы моносахаридов (формулы Толленса). Любой из моносахаридов, обладая рядом конкретных физических свойств (температура плавления, растворимость и т. д.), характеризуется специфической величиной удельного вращения [α] 20 D . Установлено, что величина удельного вращения при растворении любого моносахарида постепенно меняется и лишь при длительном стоянии раствора достигает вполне определенного значения. Так, например, свежеприготовленный раствор глюкозы имеет [α] 20 D = + 112,2°, которое после длительного стояния достигает равновесного значения [α] 20 D = + 52,5°. Изменение удельного вращения растворов моносахаридов при стоянии (во времени) называется мутаротацией. Очевидно, мутаротация должна вызываться изменением асимметрии молекулы, а следовательно, трансформацией ее структуры в растворе.

Явление мутаротации имеет следующее объяснение. Известно, что альдегиды и кетоны легко и обратимо реагируют с эквимолярным количеством спирта с образованием полуацеталей:

Реакция образования полуацеталя может осуществляться и в пределах одной молекулы, если это не связано с пространственными ограничениями. По теории Байера, внутримолекулярное взаимодействие спиртовой и карбонильной групп наиболее благоприятно, если оно приводит к образованию пяти- или шестичленных циклов. При образовании полуацеталей возникает новый асимметричный центр (в случае D-глюкозы - это C 1). Шестичленные кольца сахаров называют пиранозами, а пятичленные - фуранозами. α-Форма - это та, у которой расположение полуацетального гидроксила такое же, как гидроксила (свободного или участвующего в образовании оксидного кольца) у асимметричного углеродного атома, определяющего принадлежность к D- или L-ряду. Иными словами, в формулах с α-модификацией моносахаридов D-ряда полуацетальный гидроксил пишут справа, а в формулах представителей L-ряда - слева. При написании β-формы поступают наоборот.

Часто α- и β-формы называют анамерами (от греч. ана - вверх, кверху от), так как при обычном вертикальном изображении формул альдоз эти формы отличаются конфигурациями у первого углеродного атома.

Таким образом, явление мутаротации связано с тем, что каждый твердый препарат сахара представляет собой какую-либо одну циклическую (полуацетальную) форму, но при растворении и стоянии растворов эта форма через альдегидную превращается в другие таутомерные циклические формы до достижения состояния равновесия. При этом удельное вращение, характерное для исходной циклической формы, постепенно меняется, и, наконец, устанавливается постоянное удельное вращение, характерное для равновесной смеси таутомеров. Например, установлено, что в водных растворах глюкоза находится главным образом в виде α- и β-глюкопираноз, в меньшей степени α- и β-глюкофураноз и совсем небольшое количество - в виде альдегидной формы. При этом следует подчеркнуть, что из различных таутомерных форм глюкозы в свободном состоянии известны лишь α- и β-пиранозы. Существование малых количеств фураноз и альдегидной формы в растворах доказано, но в свободном состоянии они не могли быть выделены вследствие неустойчивости. Ниже приведены таутомерные циклические формы D-глюкозы [показать]

Проекционные формулы Хеуорса

В 20-х годах XX столетия Хеуорс предложил более совершенный способ написания структурных формул углеводов. В отличие от формул Толленса, имеющих контур прямоугольников, формулы Хеуорса - шести- или пятиугольники, причем они изображены в перспективе: кольцо лежит в горизонтальной плоскости. Находящиеся ближе к читателю связи изображают более жирными линиями (углеродные атомы цикла не пишут). Заместители, расположенные справа от остова молекулы при ее линейном изображении, помещают ниже плоскости кольца, а заместители, находящиеся слева, занимают положение выше плоскости кольца. Обратное правило применяют только для того единственного углеродного атома, гидроксильная группа которого участвует в образовании циклического полуацеталя. Так, у D-сахаров группу СН 2 ОН пишут в верхнем положении, а водородный атом при том же углеродном атоме - внизу. Наконец, следует помнить, что при написании структурных формул по Хеуорсу гидроксильная группа при С 1 будет расположена ниже плоскости кольца в α-форме и выше в β-форме [показать]

Конформации моносахаридов . Проекционные формулы Хеуорса не отражают подлинной конформации моносахаридов. Работами Ривса, а затем и многих других авторов показано, что, подобно циклогексану, пиранозное кольцо может принимать две конфигурации - форму кресла и форму лодки. Конфигурация формы кресла обычно более устойчива, и, по-видимому, именно она преобладает в большей части природных сахаров (рис. 80).

Основные реакции моносахаридов,
продукты реакций и их свойства

  • Реакции полуацетального гидроксила . Как уже отмечалось, моносахариды как в кристаллическом состоянии, так и в растворе в основном существуют в полуацетальных формах. Полуацетальный гидроксил отличается большей реакционной способностью и может замещаться другими группировками в реакциях со спиртами, карбоновыми кислотами, фенолами и т. д. Соединение, которое действует на полуацетальный гидроксил моносахарида, называют агликоном, а продукт реакции - гликозидом. Соответственно α- и β-изомерам моносахаридов существуют α- и β-гликозиды. Например, при реакции метилового спирта (агликон) с глюкозой (допустим, в β-пиранозной форме) в присутствии неорганических кислот образуется продукт алкилирования - метил-β-D-глюкопиранозид:

    При действии на β-D-глюкопиранозу уксусной кислотой образуется продукт ацилирования - ацетил-β-D-глюкопиранозид:

    Ацилированию и метилированию способны подвергаться и остальные гидроксильные группы моносахаридов, хотя это требует намного более жестких условий. В тех случаях, когда в качестве агликонов выступают спирты, фенолы или карбоновые кислоты, продукты реакции называют О-гликозидами. Следовательно, метил-β-D-глюкопиранозид и ацетил-β-D-глюкопиранозид являются О-гликозидами (связь с агликоном осуществляется через кислород). Природные О-гликозиды, большинство из которых образуется в результате жизнедеятельности растений, существуют преимущественно в β-форме.

    Весьма важным классом гликозидов являются N-гликозиды, в которых связь с агликоном осуществляется через азот, а не через кислород. Существуют еще S-гликозиды, которые представляют собой производные циклических форм тиосахаридов, в меркаптогруппе (-SH) при C 1 которых атом водорода замещен радикалом. S-Гликозиды содержатся в ряде растений (горчица, черногорка, боярышник и др.).

    N-гликозиды рассматривают как производные сахаров, у которых гликозильная часть молекулы связана через атом азота с радикалом органического соединения, не являющегося сахаром. Как и О-гликозиды, N-гликозиды могут быть построены как пиранозиды или как фуранозиды и иметь α- и β-форму:

    К N-гликозидам принадлежат исключительно важные в обмене веществ продукты расщепления нуклеиновых кислот и нуклеопротеидов (нуклеотиды и нуклеозиды), АТФ, НАД, НАДФ некоторые антибиотики и т. п.

  • Реакции с участием карбонильной группы. Хотя линейная гидроксикарбонильная форма присутствует в кристаллических препаратах моносахаридов и их растворах в незначительных количествах, все же ее участие в таутомерном равновесии сообщает моносахаридам все свойства, присущие альдегидам (в альдозах) или кетонам (в кетозах). Со способностью альдоз и кетоз присоединять спирты мы уже познакомились (см. выше). Рассмотрим теперь некоторые другие свойства.
  • Аминосахара - производные моносахаридов, гидроксильная группа которых (-ОН) замещена аминогруппой (-NН 2). В зависимости от положения аминогруппы (при атомах углерода) в молекуле аминосахара различают 2-амино-, 3-амино-, 4-амино-сахара и т. д. По числу аминогрупп выделяют моноаминосахара и диаминосахара.

    Аминосахара обладают всеми свойствами аминов, обычных моносахаров, а также специфическими свойствами, обусловленными пространственной близостью гидроксильных и аминных групп.

    В организме человека и животных наиболее важными амино-сахарами являются D-глюкозамин и D-галактозамин:

    Аминосахара входят в состав мукополисахаридов животного, растительного и бактериального происхождения, являются углеводными компонентами различных гликопротеинов и гликолипидов. В составе этих высокомолекулярных соединений аминогруппа аминосахара чаще всего ацилирована, а иногда сульфирована (см. хондроитин-4-сульфат).

Олигосахариды - углеводы, молекулы которых содержат от 2 до 8-10 остатков моносахаридов, соединенных гликозидными связями. В соответствии с этим различают дисахариды, трисахариды и т. д.

Дисахариды - сложные сахара, каждая молекула которых при гидролизе распадается на две молекулы моносахаридов. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в пище человека и животных. По своему строению дисахариды являются гликозидами, в которых две молекулы моносахаридов соединены гликозидной связью.

Среди дисахаридов особенно широко известны мальтоза, лактоза и сахароза.

Мальтоза, являющаяся α-глюкопиранозил-(1-4)-α-глюкопиранозой, образуется в качестве промежуточного продукта при действии амилаз на крахмал (или гликоген), содержит два остатка α-D-глюкозы. Название сахара, чей полуацетальный гидроксил участвует в образовании гликозидной связи, оканчивается на "ил".

В молекуле мальтозы у второго остатка глюкозы имеется свободный полуацетальный гидроксил. Такие дисахариды обладают восстанавливающими свойствами.

Одним из наиболее распространенных дисахаридов является сахароза - обычный пищевой сахар. Молекула сахарозы состоит из одного остатка D-глюкозы и одного остатка D-фруктозы. Следовательно, это - α-глюкопиранозил-(1-2)-β-фруктофуранозид:

В отличие от большинства дисахаридов сахароза не имеет свободного полуацетального гидроксила и не обладает восстанавливающими свойствами.

Дисахарид лактоза содержится только в молоке и состоит из D-галактозы и D-глюкозы. Это - α-глюкопиранозил-(1-4)-глюкопираноза:

Поскольку в молекуле лактозы имеется свободный полуацетальный гидроксил (в остатке глюкозы), она принадлежит к числу редуцирующих дисахаридов.

Среди природных трисахаридов важное значение имеют немногие. Наиболее известна рафиноза, содержащая остатки фруктозы, глюкозы и галактозы, которая находится в больших количествах в сахарной свекле и во многих других растениях.

В целом олигосахариды, присутствующие в растительных тканях, разнообразнее по своему составу, чем олигосахариды животных тканей.

С точки зрения общих принципов строения полисахариды можно разделить на две группы, а именно: на гомополисахариды, состоящие из моносахаридных единиц только одного типа, и гетерополисахариды, для которых характерно наличие двух или более типов мономерных звеньев.

С точки зрения функционального назначения полисахариды также могут быть разделены на две группы: структурные и резервные полисахариды. Важным структурным полисахаридом является целлюлоза, а главные резервные полисахариды - гликоген и крахмал (у животных и растений соответственно). Здесь будут рассмотрены только гомополисахариды. Гетерополисахариды описаны в главе "Биохимия соединительной ткани".

Крахмал представляет собой смесь двух гомополисахаридов: линейного - амилозы и разветвленного - амилопектина, общая формула которых (С 6 Н 10 O 5) n [показать] .

Как правило, содержание амилозы в крахмале составляет 10-30%, амилопектина - 70-90%. Полисахариды крахмала построены из остатков глюкозы, соединенных в амилозе и в линейных цепях амилопектина α-1,4-глюкозидными связями, а в точках ветвления амилопектина - межцепочечными α-1,6-глюкозидными связями.

В молекуле амилозы связано в среднем около 1000 остатков глюкозы, отдельные линейные участки молекулы амилопектина состоят из 20-30 таких единиц.

В воде амилоза не дает истинного раствора. Цепочка амилозы в воде образует гидратированные мицеллы. В растворе при добавлении йода амилоза окрашивается в синий цвет. Амилопектин также дает мицеллярные растворы, но форма мицелл несколько иная. Полисахарид амилопектин окрашивается йодом в красно-фиолетовый цвет.

Крахмал имеет молекулярную массу 10 6 -10 7 . При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации - декстрины, при полном гидролизе - глюкоза. Крахмал является наиболее важным для человека пищевым углеводом; содержание его в муке 75-80%, в картофеле 25%.

Гликоген - главный резервный полисахарид высших животных и человека, построенный из остатков α-D-глюкозы. Эмпирическая формула гликогена, как и крахмала (С 6 Н 10 O 5) n . Гликоген содержится практически во всех органах и тканях животных и человека; наибольшее количество его находится в печени и мышцах. Молекулярная масса гликогена 10 7 -10 9 и выше. Его молекула построена из ветвящихся полиглюкозидных цепей, в которых остатки глюкозы соединены α-1,4-глюкозидными связями. В точках ветвления имеются α-1,6-глюкозидные связи. Гликоген по своему строению близок к амилопектину.

В молекуле гликогена различают внутренние ветви - участки полиглюкозидных цепей между точками ветвления, и наружные ветви - участки от периферической точки ветвления до нередуцирующего конца цепи (рис. 81) [показать] . При гидролизе гликоген, подобно крахмалу, расщепляется с образованием сначала декстринов, затем мальтозы и, наконец, глюкозы.

Целлюлоза (клетчатка) - наиболее широко распространенный структурный полисахарид растительного мира.

Целлюлоза состоит из α-глюкозных остатков в их β-пиранозной форме, т. е. в молекуле целлюлозы β-глюкопиранозные мономерные единицы линейно соединены между собой β-1,4-глюкозидными связями.

Определение

Углеводы – это природные соединения, имеющие состав C$_n$(H$_2$O)$_m$. Исключение - дезоксирибоза С$_5$Н$_{10}$О$_4$.

Следует отметить, что молекулярная формула C$_n$(H$_2$O)$_m$ может описывать и другие классы соединений.

Углеводы входят в состав всех живых организмов, они составляют около 80% от сухой массы растений, а полисахарид целлюлоза является самым распространенным органическим веществом на Земле.

В растениях и животных углеводы выполняют разнообразные функции: служат источником энергии, являются "строительным материалом" клеточных стенок растений, определяют защитные свойства млекопитающих (наряду с белками). Углеводы служат исходными веществами для производства бумаги, искусственных волокон, взрывчатых веществ и др. Многие углеводы находят применение в медицине.

Среди наиболее известных углеводов можно выделить следующие (на рисунках приведены структурные формулы углеводов и их источники (для "а" , "б", "в") или их использование ("г")):

а) глюкоза - моносахарид, виноградный сахар.

б) сахароза - дисахарид, тростниковый сахар.

в) крахмал - полисахарид, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, основное питательное вещество в клетках растений.

г) целлюлоза - полисахарид, главная составная часть клеточных оболочек всех высших растений.

КЛАССИФИКАЦИЯ УГЛЕВОДОВ.

Исторически к углеводам относят вещества весьма разнообразного строения - от низкомолекулярных, построенных всего лишь из нескольких атомов углерода (чаще всего из пяти или шести), до полимеров с молекулярной массой в несколько миллионов.

Последние, называемые полисахаридами , в результате полного гидролиза образуют более простые соединения - моносахариды . Промежуточную группу составляют олигосахариды , включающие относительно небольшое количество мономерных звеньев.

Определение 1

Моносахариды - мономеры, из остатков которых состоят углеводы более сложного строения. Моносахариды не подвергаются гидролизу.

Определение 2

Олигосахариды – олигомеры, содержащие от 2 до 10 моносахаридных остатков.

Определение 3

Полисахариды – полимеры, включающие до нескольких тысяч моносахаридных звеньев

Моносахариды (например, глюкоза, фруктоза, галактоза и др.) относят к группе веществ, для которых вопрос строения важен как ни для какого другого класса соединений. Итак, моносахариды можно классифицировать по:

I. По количеству атомов углерода в цепи

    триоза - три атома углерода

    тетроза - четыре атома углерода в цепи

    пентоза - пять атомов углерода в цепи

    гексоза - шесть атомов углерода в цепи

II. По типу карбонильной группы

    альдоза - содержит альдегидную группу ($-C(O)H$)

    кетоза - содержит кето-группу ($-C(O)-$)

III. По конфигурации последнего хирального атома углерода

    углеводы D-ряда

    углеводы L-ряда

Разнообразие моносахаридов связано главным образом со стереохимическими различиями. Например, в молекулах пентоз или гексоз содержится от 2-х до 4-х хиральных (асимметрических) атомов углерода, поэтому одной и той же структурной формуле соответствует несколько изомеров.

Определение

Хиральный (или асимметрический ) атом углерода - атом углерода в $sp^3$-гибридизации, который имеет четыре разных заместителя . Соединения с хиральным атомом углерода (хиральным центром) обладают оптической активностью, т.е. способностью вещества в растворе вращать плоскость поляризованного света.

Для обозначения пространственного строения моносахаридов исторически используется D,L-система.

Положение гидроксильной группы у последнего центра хиральности справа свидетельствует от принадлежности моносахарида к D-ряду, слева - к L-ряду, например.

В живой природе широко распространены многие вещества, значение которых сложно переоценить. К примеру, к таковым относятся углеводы. Они чрезвычайно важны в качестве источника энергии для животных и человека, а некоторые свойства углеводов делают их незаменимым сырьем для промышленности.

Что это такое?

Краткие сведения о химическом строении

Если посмотреть на линейную формулу, то в составе этого углевода хорошо заметна одна альдегидная и пять гидроксильных групп. Когда вещество находится в кристаллическом состоянии, то молекулы его могут находиться в одной из двух возможных форм (α- или β-глюкоза). Дело в том, что гидроксильная группа, сцепленная с пятым атомом углерода, может вступать во взаимодействие с карбонильным остатком.

Распространенность в природных условиях

Так как ее исключительно много в виноградном соке, глюкозу нередко называют «виноградным сахаром». Под таким именем ее знали еще наши далекие предки. Впрочем, отыскать ее можно в любом другом сладком овоще или фрукте, в мягких тканях растения. В животном мире ее распространенность ничуть не ниже: приблизительно 0,1% нашей крови - это именно глюкоза. Кроме того, найти можно эти углеводы в клетке практически любого внутреннего органа. Но особенно их много в печени, так как именно там осуществляется переработка глюкозы в гликоген.

Она (как мы уже и говорили) является ценным источником энергии для нашего организма, входит в состав практически всех сложных углеводов. Как и прочие простые углеводы, в природе она возникает после реакции фотосинтеза, которая протекает исключительно в клетках растительных организмов:

6СО 2 + 6Н 2 О хлорофилл С 6 Н 12 О 6 + 6О 2 - Q

Растения при этом выполняют невероятно важную для биосферы функцию, аккумулируя энергию, которая получается ими от солнца. Что касается промышленных условий, то издревле получали из крахмала, производя его гидролиз, причем катализатором реакции является концентрированная серная кислота:

(С 6 Н 10 О 5)n + nH 2 О H 2 SO 4 , t nC 6 H 12 О 6

Химические свойства

Каковы химические свойства углеводов этого вида? Обладают все теми же характеристиками, которые свойственны сугубо спиртам и альдегидам. Кроме того, имеются у них и некоторые специфические особенности. Впервые синтез простых углеводов (в том числе и глюкозы) был произведен талантливейшим химиком А. М. Бутлеровым в 1861 году, причем в качестве сырья он использовал формальдегид, расщепляя его в присутствии гидроксида кальция. Вот формула этого процесса:

6НСОН ------->С6Н 12 О 6

А сейчас рассмотрим некоторые свойства двух других представителей группы, природное значение которых не менее велико, а потому их изучает биология. Углеводы этих видов играют в нашей повседневной жизни весьма важную роль.

Фруктоза

Формула этого глюкозного изомера - СеН 12 О б. Наподобие «прародителя» может существовать в линейной и циклической форме. Вступает во все реакции, которые характерны для многоатомных спиртов, но, тем самым отличаясь от глюкозы, никак не взаимодействует с аммиачным раствором оксида серебра.

Рибоза

Чрезвычайно большой интерес представляет рибоза и дезоксирибоза. Если вы хоть немного помните программу биологии, то и сами прекрасно знаете о том, что именно эти углеводы в организме входят в состав ДНК и РНК, без которых само существование жизни на планете невозможно. Название «дезоксирибоза» означает, что в ее молекуле на один атом кислорода меньше (если ее сравнивать с обычной рибозой). Будучи сходными в этом отношении с глюкозой, также могут иметь линейное и циклическое строение.

Дисахариды

В принципе, эти вещества по своему строению и функциям во многом повторяют предыдущий класс, а потому нет смысла останавливаться на этом более подробно. Каковы химические свойства углеводов, относящихся к этой группе? Важнейшими представителями семейства являются сахароза, мальтоза и лактоза. Все они могут быть описаны формулой С 12 Н 22 О 11 , так как являются изомерами, но это не отменяет огромных различий в их строении. Так чем характерны сложные углеводы, список и описание которых вы можете увидеть ниже?

Сахароза

Ее молекула имеет в своем составе сразу два цикла: один из них является шестичленным (остаток α-глюкозы), а другой - пятичленный (остаток β-фруктозы). Соединяется все эта конструкция за счет гликозидного гидроксила глюкозы.

Получение и общее значение

Согласно сохранившимся историческим сведениям, еще за три века до Рождества Христова сахар из научились получать в Древней Индии. Только в середине 19-го века оказалось, что куда больше сахарозы с меньшими для этого усилиями можно добыть из сахарной свеклы. В некоторых ее сортах содержится до 22% этого углевода, тогда как в тростнике содержание может быть в пределах 26%, но такое возможно только при идеальных условиях выращивания и благоприятном климате.

Мы уже говорили, что углеводы хорошо растворяются в воде. Именно на этом принципе основано получение сахарозы, когда для этой цели используют аппараты-диффузоры. Чтобы осадить возможные примеси, раствор фильтруют через фильтры, в состав которых входит известь. Чтобы удалить из полученного раствора гидроксид кальция, через него пропускают обычный углекислый газ. Осадок отфильтровывают, а сахарный сироп упаривают в специальных печах, получая на выходе уже знакомый нам сахар.

Лактоза

Этот углевод в промышленных условиях выделяется из обычного молока, в котором в избытке содержатся жиры и углеводы. В нем этого вещества содержится довольно много: так, коровье молоко содержит приблизительно 4-5,5% лактозы, а в молоке женщин ее объемная доля доходит до 5,5-8,4%.

Каждая молекула этого глицида состоит из остатков 3-галактозы и а-глюкозы в пиранозной форме, которые образуют связи посредством первого и четвертого атома углерода.

В отличие от других сахаров, у лактозы есть одно исключительное свойство. Речь идет о полном отсутствии гигроскопичности, так что даже во влажном помещении этот глицид совершенно не отсыревает. Это свойство активно используется в фармацевтике: если в состав какого-то лекарства в порошкообразной форме входит обычная сахароза, то к ней обязательно добавляют лактозу. Она совершенно натуральная и безвредна для человеческого организма, в отличие от многих искусственных добавках, которые препятствуют слеживанию и намоканию. Каковы функции и свойства углеводов этого типа?

Биологическое значение лактозы чрезвычайно велико, так как лактоза является важнейшим питательным компонентом молока всех животных и человека. Что же касается мальтозы, то ее свойства несколько отличны.

Мальтоза

Является промежуточным продуктом, который получается при гидролизе крахмала. Название «мальтоза» получил из-за того что образуется во многом под влиянием солода (по-латински солод - maltum). Широко распространен не только в растительных, но и в животных организмах. В больших количествах образуется в пищеварительном тракте жвачных животных.

и свойства

Молекула этого углевода состоит из двух частей α-глюкозы в пиранозной форме, которые соединены между собой посредством первого и четвертого атомов углерода. На вид представляет собой бесцветные, белые кристаллы. На вкус - сладковатая, прекрасно растворяется в воде.

Полисахариды

Следует помнить, что все полисахариды можно рассматривать с той точки зрения, что они представляют собой продукты поликонденсации моносахаридов. Их общая химическая формула - (С б Н 10 О 5)п. В рамках данной статьи мы рассмотрим крахмал, так как он является наиболее типичным представителем семейства.

Крахмал

Образуется в результате фотосинтеза, в больших количествах откладывается в корнях и семенах растительных организмов. Каковы физические свойства углеводов этого вида? На вид представляет собой белый порошок с плохо выраженной кристалличностью, нерастворимый в холодной воде. В горячей жидкости образует коллоидную структуру (клейстер, кисель). В пищеварительном тракте животных имеется много ферментов, которые способствуют его гидролизу с образованием глюкозы.

Является наиболее распространенным который образован из множества остатков а-глюкозы. В природе одновременно встречаются две его формы: амилоза и амшопектин. Амилоза, будучи линейным полимером, может быть растворена в воде. Молекула состоит из остатков альфа-глюкозы, которые связаны через первый и четвертый атом углерода.

Нужно помнить, что именно крахмал является первым видимым продуктом фотосинтеза растений. В пшенице и других злаковых его содержится до 60-80%, тогда как в клубнях картофеля - всего 15-20%. К слову говоря, по виду крахмальных зерен под микроскопом можно безошибочно определить видовую принадлежность растения, так как они у всех разные.

Если нагреть, его огромная молекула будет быстро разлагаться с образованием мелких полисахаридов, которые известны под названием декстринов. У них с крахмалом одна общая химическая формула (С 6 Н 12 О 5)х, но имеется разница в значении переменной «х», которое меньше значения «n» в крахмале.

Напоследок приведем таблицу, в которой отражены не только основные классы углеводов, но и их свойства.

Основные группы

Особенности молекулярного строения

Отличительные свойства углеводов

Моносахариды

Различаются по числу атомов углерода:

  • Триозы (С3)
  • Тетрозы (С4)
  • Пентозы (С5)
  • Гексозы (С6)

Бесцветные или белые кристаллы, отлично растворяются в воде, сладкие на вкус

Олигосахариды

Сложное строение. В зависимости от вида, содержат 2-10 остатков простых моносахаридов

Внешний вид тот же, чуть хуже растворяются в воде, менее сладкий вкус

Полисахариды

Состоят из очень большого количества остатков моносахаридов

Белый порошок, кристаллическая структура выражена слабо, в воде не растворяются, но имеют свойство в ней разбухать. На вкус нейтральные

Вот каковы функции и свойства углеводов основных классов.

Углеводы - самые распространенные в природе органические соединения. Они встречаются в свободной и связанной формах в любой растительной, животной и бактериальной клетке. Они состоят из углерода, водорода и кислорода в следующем соотношении - на один атом углерода приходится одна молекула воды. Углеводы, как правило, образуются в зеленых растениях в ходе фотосинтеза.

Все углеводы делят на три группы: моносахариды, олигосахариды и полисахариды.

Моносахариды содержат 3-9 атомов углерода и к ним относятся такие вещества как глюкоза, фруктоза, галлактоза, рибоза.

Глюкоза (виноградный сахар) - в свободном виде содержится в ягодах и фруктах, из глюкозы состоят крахмал, гликоген и др., она является составной частью сахарозы, лактозы.

Фруктоза (плодовый сахар) - содержится в чистом виде в пчелином меде, винограде, яблоках, так же является составной частью сахарозы.

Олигосахариды - молекулы содержат от 2 до 10 остатков моносахаридов, соединенных гликозидными связями. К олигосахаридам относят сахарозу, мальтозу, лактозу, раффинозу и др. Сахароза представляет собой обычный пищевой сахар, мальтоза содержится только в молоке.

Полисахариды - к ним относят крахмал, гликоген, клетчатка и др.

Крахмал - наиболее распространенный углевод. Различают клубневый (картофель, батат) и зерновой (кукуруза, рис) крахмал. Он откладывается в клетках растений в виде зерен, из которых он легко выделяется механическим воздействием и при промывании водой. Крахмал состоит из двух фракций: амилоза (18-25 %) и амилопектин (75-82 %). В ходе технологической обработки под действием влаги и тепла крахмал способен адсорбировать влагу, набухать, клейстеризоваться, подвергаться деструкции.

Гликоген - углевод животного происхождения, накапливается в печени (около 10 %) и в мышцах (0.3-1 %) как запасной источник энергии. При его расщеплении образуются глюкоза, которая поступает в кровь и доставляется ко всем тканям организма.

Клетчатка - основной материал клеточных стенок растений. Ферменты желудочно-кишечного тракта человека не расщепляют клетчатку, и она относится к пищевым волокнам.

Пектиновые вещества - группа высокомолекулярных полисахаридов, входящих в состав клеточных стенок. Они содержаться в плодах, овощах в виде нерастворимого в холодной воде протопектина и растворимого пектина. Переход нерастворимых форм в растворимые происходит в процессе тепловой обработки. Пектиновые вещества способны образовывать гели в присутствии кислоты и сахара. Пектиновые вещества не усваиваются организмом, но играют в физиологии питания человека и технологии более активную роль, чем клетчатка. Они образуют комплексные соединения с тяжелыми металлами, выводя их из организма, и являются важным профилактическим средством для профилактики различных заболеваний.

Около 52-66% углеводов поступает с зерновыми продуктами, 14-26% с сахарами и сахаропродуктами, 8-10% с клубне-корнеплодами и 5-7% с овощами и фруктами. Количество углеводов в мясе и мясопродуктах сравнительно не велико и составляет около 1-1.5 %. Роль их в мясе определяется участием в биохимических процессах созревания мяса (изменение рН), формирования вкуса и аромата, изменения консистенции.

Углеводы выполняют следующие функции:

являются источниками энергии;

регуляторная (противостоят образованию кетоновых веществ при окислении жиров);

защитная (глюкуроновая кислота соединяясь с токсичными веществами, образует нетоксичные сложные эфиры, которые выводятся из организма);

участвуют в формировании органолептических характеристик продукта.

Среди углеводов есть представители, которые не усваиваются организмом, но выполняют важную физиологическую функцию, которые называются пищевые волокна. Благодаря специфическим функциональным свойствам они активно участвуют в регуляции биохимических процессов органов пищеварения (стимулируют моторную функцию кишечника, препятствуют всасыванию холестерина) и выведения из организма токсических веществ поступающих с водой, пищей и воздухом. Пищевые волокна являются профилактическими веществами таких заболеваний как сахарный диабет, ожирение, ишемическая болезнь сердца.

Углеводы при хранении пищевого сырья, его переработке претерпевают различные изменения, которые зависят от вида углеводов, условий процесса (влажность, температура, рН) и наличия ферментов. Важными превращениями углеводов являются: кислотный и ферментативный гидролиз ди- и полисахаридов, брожение, реакции меланоидинообразования и карамелизации.

Тема урока: « Углеводы» для 11 класса гуманитарного направления

Цели:

образовательные:

Сформировать у учащихся знания об углеводах, их составе и классификации. Рассмотреть зависимость химических свойств углеводов от строения молекул. Качественные реакции на глюкозу и крахмал. Дать представление о биологической роли углеводов, их значении в жизни человека.

развивающие:

Продолжить развивать у учащихся мыслительные операции: умение связывать уже имеющиеся знания с вновь приобретенными, умение выделять главное в изученном материале, обобщать изученный материал и делать выводы.

воспитательные:

Воспитание ответственного отношения к учебе, стремления к творческой, познавательной деятельности.

Тип: изучение нового материала

Вид: лекция

Метод : объяснительно-иллюстративный с компьютерным сопровождением

План проведения занятия

1. Организационный момент

2. Мотивация занятия

Углеводы служат важным источником питания: мы потребляем зерно, или скармливаем его животным, в организме которых крахмал превращается в белки и жиры. Самая гигиеничная одежда сделана из целлюлозы или продуктов на её основе: хлопка и льна, вискозного волокна или ацетатного шелка. Деревянные дома и мебель построены из той же целлюлозы, образующей древесину. В основе производства фото- и кинопленки все та же целлюлоза. Книги, газеты, денежные банкноты – всё это продукция целлюлозно-бумажной промышленности. Значит, углеводы обеспечивают нас всем необходимым.

Кроме того, углеводы участвуют в построении сложных белков, ферментов, гормонов. Углеводами являются и такие жизненно необходимые вещества, как гепарин (он играет важнейшую роль - предотвращает свертывание крови), агар-агар (его получают из морских водорослей и применяют в микробиологической и кондитерской промышленности).

Единственным источником энергии на Земле (помимо ядерной) является энергия Солнца, а единственным способом его аккумулирования для обеспечения жизнедеятельности всех живых организмом является процесс фотосинтеза, протекающий в клетках растений и приводящий к синтезу углеводов из воды и углекислого газа. Кстати, именно при этом превращении образуется кислород, без которого жизнь на нашей планете была бы невозможно.

План лекции

1. Понятие об углеводах. Классификация углеводов.

2. Моносахариды

3. Дисахариды

4. Полисахариды

1. Понятие об углеводах. Классификация углеводов.

Углеводы - обширный класс природных соединений, которые играют важную роль в жизни человека, животных и растений.

Название «углеводы» эти соединения получили потому, что состав многих из них выражается общей формулой Сn (H 2 O ) m , т.е. формально являются соединениями углерода и воды. С развитием химии углеводов обнаружены соединения, состав которых не отвечает приведенной формуле, но обладающие свойствами веществ своего класса (например, дезоксирибоза С 5 Н 10 О 4). В то же время есть вещества, соответствующие общей формуле углеводов, но не проявляющие их свойства (например, спирт инозит С 6 Н 12 О 6).

Классификация углеводов

Все углеводы можно разделить на две группы: простые углеводы (моносахариды) и сложные углеводы.

Простые углеводы (моносахариды) – это простейшие углеводы, не гидролизующиеся с образованием более простых углеводов.

Сложные углеводы – это углеводы, молекулы которых состоят их двух или более числа остатков моносахаридов и разлагаются на эти моносахариды при гидролизе.

2. Моносахариды

Моносахариды представляют собой соединения со смешанными функциями. Они содержат альдегидную или кетогруппу и несколько гидроксильных групп, т.е. являются альдегидоспиртами или кетоноспиртами .

Моносахариды с альдегидной группой называются альдозами, а с кетогруппой – кетозами.

По числу углеродных атомов в молекуле моносахариды делятся на тетрозы, пентозы, гексозы и т.д.

Наибольшее значение среди моносахаридов имеют гексозы и пентозы.

Структура моносахаридов

Для изображения строения моносахаридов используют проекционные формулы Фишера. В формулах Фишера цепь углеродных атомов располагается в одну цепь. Нумерация цепи начинается с атома альдегидной группы (в случае альдоз) или с крайнего атома углерода, к которому ближе расположена кетогруппа (в случае кетоз).

В зависимости от пространственного расположения атомов Н и ОН-групп у 4-ого атома углерода у пентоз и 5-ого атома углерода у гексоз моносахариды относят к D – или L – ряду.

Моносахарид относят к D – ряду, если ОН-группа у этих атомов располагается справа от цепи.

Почти все встречающиеся в природе моносахариды относятся к D – ряду.

Однако моносахариды могут существовать также в циклических формах. Циклические формы гексоз и пентоз называют соответственно пиранозными и фуранозными.

В растворах моносахаридов устанавливается подвижное равновесие между ациклической и циклической формами – таутомерия.

Циклические формы принято изображать перспективными формулами Хеуорса.

В циклических формах моносахаридов появляется асимметрический атом углерода (С-1 у альдоз, С-2 у кетоз). Этот атом углерода называется аномерным. Если группа ОН у аномерного атома располагается под плоскостью, то образуется α–аномер, противоположное расположение приводит к образованию β-аномера.

Физические свойства

Бесцветные кристаллические вещества, сладкие на вкус, хорошо растворимые воде, плохо растворимые в спирте. Сладость моносахаридов различна. Например, фруктоза слаще глюкозы в 3 раза.

(слайд 8 – 12.)

Химические свойства

Химические свойства моносахаридов обусловлены особенностями их строения.

Рассмотрим химические свойства на примере глюкозы.

1. Реакции с участием альдегидной группы глюкозы

а) восстановление (гидрирование) с образованием многоатомного спирта сорбита

СН=О СН 2 ОН

kat , t 0 │

(СНОН) 4 + Н 2 → (СНОН) 4

СН 2 ОН СН 2 ОН

б) окисление

реакция «серебряного зеркала»(с аммиачным раствором оксида серебра, t 0 ),

реакция с гидроксидом меди (II ) Cu (OH ) 2 в щелочной среде, t 0 )

CH=O COOH

NH 4 OH, t 0 │

(CHOH ) 4 + Ag 2 O → (CHOH ) 4

CH 2 OH CH 2 OH

Продуктом окисления является глюконовая кислота (соль этой кислоты – глюконат кальция – известное лекарственное средство).

CH =O COOH

t 0 │

(CHOH) 4 + 2Cu(OH) 2 → (CHOH) 4 + Cu 2 O↓ + 2H 2 O

голубой │ кирпично-красный

CH 2 OH CH 2 OH

Эти реакции являются качественными на глюкозу как альдегид.

Под действием сильных окислителей (например, азотной кислоты) образуется двухосновная глюкаровая кислота.

CH =O COOH

t 0 │

(CHOH ) 4 + HNO 3 → (CHOH ) 4

CH 2 OH COOH

2. Реакция глюкозы с участием гидроксильных групп (т.е. свойства глюкозы как многоатомного спирта)

а) взаимодействие с Cu (OH ) 2 на холоду с образованием глюконата меди (II ) – качественная реакция на глюкозу как многоатомный спирт.

3. Брожение (ферментация) моносахаридов

а) спиртовое брожение

С 6 Н 12 О 6 → 2С 2 Н 5 ОН + 2СО 2

б) маслянокислое брожение

С 6 Н 12 О 6 → СН 3 ─СН 2 ─СН 2 ─СООН + 2Н 2 + 2СО 2

в) молочнокислое брожение

С 6 Н 12 О 6 → 2СН 3 ─ СН ─ СООН

ОН

Биологическая роль глюкозы

D -глюкоза (виноградный сахар) широко распространена в природе: содержится в винограде и других плодах, в меде. Она является обязательным компонентом крови и тканей животных и непосредственным источником энергии для клеточных реакций. Уровень глюкозы в крови человека постоянен и находится в пределах 0,08-0,11%. Во всем объеме крови взрослого человека содержится 5-6 г. глюкозы. Такого количества достаточно для покрытия энергетических затрат организма в течение 15 мин. его жизнедеятельности. При некоторых патологиях, например, при заболевании сахарным диабетом, содержание глюкозы в крови повышается, и избыток её выводится с мочой. При этом количество глюкозы в моче может возрасти до 12% против обычного – 0,1%.

3. Дисахариды

(слайд 13.)

Дисахариды – продукты конденсации двух моносахаридов.

Важнейшие природные представители: сахароза (тростниковый или свекловичный сахар), мальтоза (солодовый сахар), лактоза (молочный сахар), целлобиоза. Все они имеют ту же эмпирическую формулу С 12 Н 22 О 11 , т.е. являются изомерами.

Дисахариды – типичные сахароподобные углеводы; это твердые кристаллические вещества, имеющие сладкие вкус.

(слайд 14-15.)

Строение

1. Молекулы дисахаридов могут содержать два остатка одного моносахарида или два остатка разных моносахаридов;

2. Связи, образующиеся между остатками моносахаридов, могут быть двух типов:

а) в образовании связи принимают участие полуацетальные гидроксилы обеих молекул моносахаридов. Например, образование молекулы сахарозы;

б) в образовании связи принимают участие полуацетальный гидроксил одного моносахарида и спиртовый гидроксил другого моносахарида. Например, образование молекул мальтозы, лактозы и целлобиозы.

(слайд 16-17.)

Химические свойства дисахаридов

1. Дисахариды, в молекулах которых сохраняется полуацетальный гидроксил (мальтоза, лактоза, целлобиоза), в растворах частично превращаются в открытые альдегидные формы и вступают в реакции, характерные для альдегидов, в частности в реакцию «серебряного зеркала» и с гидрокисдом меди (II ). Такие дисахариды называют восстанавливающими.

Дисахариды, в молекулах которых нет полуацетального гидроксила (сахароза) не могут переходить в открытые карбонильные группы. Такие дисахариды называются невосстанавливающими (не восстанавливают Cu (OH ) 2 и Ag 2 O ).

2. Все дисахариды являются многоатомными спиртами, для них характерны свойства многоатомных спиртов, они дают качественную реакции на многоатомные спирты – реакция с Cu (OH ) 2 на холоду.

3. Все дисахариды гидролизуются с образованием моносахаридов:

Н + , t 0

С 12 Н 22 О 11 + Н 2 О → С 6 Н 12 О 6 + С 6 Н 12 О 6

сахароза глюкоза фруктоза

В живых организмах гидролиз идет под действием ферментов.

4. Полисахариды

(слайд 18 - 20.)

Полисахариды – высокомолекулярные несахароподобные углеводы, содержащие от десяти до сотен тысяч остатков моносахаридов (обычно гексоз), связанных гликозидными связями.

Важнейшие природные представители: крахмал, гликоген, целлюлоза. Это природные полимеры (ВМС), мономером которого является глюкоза. Их общая эмпирическая формула (С 6 Н 10 О 5) n .

Крахмал – аморфный порошок белого цвета, без вкуса и запаха, плохо растворим в воде, в горячей воде образует коллоидный раствор. Макромолекулы крахмала построены из большого числа остатков α-глюкозы, связанных α-1,4-гликозидными связями.

Крахмал состоит из двух фракций: амилозы (20-30%) и амилопектина (70-80%).

Молекулы амилозы – очень длинные неразветвленные цепи, состоящие из остатков α-глюкозы. Молекулы амилопектина в отличие от амилозы сильно разветвлены.

Химические свойства крахмала:

(слайд 21.)

1. гидролиз

Н 2 О, ферменты

(С 6 Н 10 О 5) n → (С 6 Н 10 О 5) m → С 12 Н 22 О 11 → n C 6 H 12 O 6

крахмал декстрины мальтоза глюкоза

Реакцию превращения крахмала в глюкозу при каталитическом действии серной кислоты открыл в 1811 г. русский ученый К. Кирхгоф.

2. Качественная реакция на крахмал

(С 6 Н 10 О 5) n + I 2 → комплексное соединение сине-фиолетового цвета.

При нагревании окрашивание исчезает (комплекс разрушается), при охлаждении появляется вновь.

Крахмал – один из продуктов фотосинтеза, главное запасное питательное вещество растений. Остатки глюкозы в молекулах крахмала соединены достаточно прочно и в тоже время под действием ферментов легко могут отщепляться. Как только возникнет потребность в источнике энергии.

Гликоген – это эквивалент крахмала, синтезируемый в животном организме, т.е. это тоже резервный полисахарид, молекулы которого построены из большого числа остатков α-глюкозы. Содержится гликоген главным образом в печении мышцах.

Целлюлоза или клетчатка

Главная составная часть растительной клетки, синтезируется в растениях (в древесине до 60% целлюлозы). Чистая целлюлоза – белое волокнистое вещество, без вкуса и запаха, нерастворимое в воде.

Молекулы целлюлозы – это длинные цепи, состоящие из остатков β-глюкозы, которые соединяются за счет образования β-1,4-гликозидных связей.

В отличие от молекул крахмала целлюлоза состоит только из неразветвленных молекул в виде нитей, т.к. форма остатков β-глюкозы исключает спирализацию.

Целлюлоза не является продуктом питания человека и большинства животных, т.к. в их организмах нет ферментов, расщепляющих более прочные β-1,4-гликозидные связи.

(слайд 22- 23.)

Химические свойства целлюлозы:

1. гидролиз

При длительном нагревании с минеральными кислотами или под действием ферментов (у жвачных животных и кроликов) идет ступенчатый гидролиз:

Н 2 О

(С 6 Н 10 О 5) n → y (С 6 Н 10 О 5) x → n /2 С 12 Н 22 О 11 → n C 6 H 12 O 6

целлюлоза целлобиоза β-глюкоза

2. образование сложных эфиров

а) взаимодействие с неорганическими кислотами

б) взаимодействие с органическими кислотами

3. горение

(С 6 Н 10 О 5) n +6nO 2 → 6nCO 2 +5nH 2 O

4. термическое разложение целлюлозы без доступа воздуха:

t 0

(С 6 Н 10 О 5) n → древесный уголь +Н 2 О +летучие органические вещества

Являясь составной часть древесины, целлюлоза используется в строительном и столярном деле; как топливо; из древесины получают бумагу, картон, этиловый спирт. В виде волокнистых материалов (хлопок, лен) целлюлоза используется для изготовления тканей, нитей. Эфиры целлюлозы идут на изготовление нитролаков, пластмасс, медицинского коллодия, искусственного волокна.



mob_info