Эффект ребиндера при механической обработке твердых тел. Внешний и внутренний эффекты ребиндера. Примеры эффекта Ребиндера

и K " n

D K n

При изучении процесса диспергирования установлено, что в частице при деформации развиваются микротрещины на основе дефектов кристаллической решетки. Среди этих микротрещин имеются и такие, широкие части которых выходят на поверхность тела, а тупики остаются внутри тела. Поверхностные микротрещины являются основной причиной понижения механической прочности реальных твердых тел по сравнению с их теоретической прочностью.

8.4.2. Эффект Ребиндера и его роль в диспергировании.

В 1928 г. П. А. Ребиндер высказал предположение о том, что в

основе понижения механических свойств твердых тел под влиянием поверхностно-активных веществ (ПАВ) лежит снижение свободной поверхностной энергии и, как следствие, уменьшение работы, необходимой для образования новых поверхностей.

Разрушение можно рассматривать как процесс образования новых поверхностей, следовательно, адсорбция ПАВ облегчает разрушение. Прочность твердого тела тем меньше, чем меньше поверхностная энергия. Поверхностную энергию можно уменьшить с помощью ПАВ. Существует выражение, устанавливающее связь прочности и поверхностной энергии для тела, имеющего дефект в виде микротрещины.

Рассмотрим твердое тело – пластину (рис. 8.3) единичной толщины, к которой приложено растягивающее напряжение P . В соответствии с законом Гука, упругая деформация тела приводит к накоплению в нем упругой энергии с плотностью, равной

W упр

где E - модуль Юнга. Пусть в теле возникает сплошная трещина длинной L . При этом в части объема происходит уменьшение упругой

Зависимость lg D (или lg ) от lg в соответствии с уравнением

D K n и K " n представляет собой прямую линию, тангенс угла наклона которой равен показателю степени n с минусом. Значение показателя n в этих уравнениях зависит от соотношения между размером частиц и длиной волны падающего света, характеризуемого параметром z .

Показатель степени n в уравнениях

находят на основе турбидиметрических данных. Для этого экспериментально измеряют оптическую плотность системы при различных длинах волн и строят график зависимости в координатах

lg D lg . Показатель

определяют

тангенсу

угла наклона

полученной прямой. По значению n

находят соответствующее

значение параметра

рассчитывают средний радиус частиц исследуемой дисперсной системы.

Следует отметить, что этот метод, как и уравнение Рэлея, применим только для «белых» золей, то есть для дисперсных систем, не поглощающих свет (метод базируется только на светорассеянии).

10.8. Световая микроскопия.

10.8.1. Световая микроскопия.

Светорассеяние и нефелометрия являются косвенными методами

измерения размера частиц, основанными на оптических свойствах дисперсных систем. Возникает вопрос, существуют ли прямые методы, то есть можно ли увидеть коллоидную частицу. При наблюдении системы в обычный микроскоп в проходящем свете

www.mitht.ru/e-library

Значение показателя степени n в этом уравнении в свою очередь зависит от z ; с увеличением z значение n уменьшается, стремясь в пределе к 2 для частиц, радиус которых

больше длины волны. При малых значениях z соблюдается уравнение Рэлея и при n 4 .

Исходя из теории Шифрина, можно определить размер частиц по характеристической мутности. Для этого измеряют значение оптической плотности D серии разбавленных растворов и вычисляют

мутность по уравнению:

С помощью графической экстраполяции находят значение характеристической мутности. Подставляя найденное значение также значение и в формулу (10.26), определяют значение (z)

и по таблице значение z . По уравнению (10.24) вычисляют радиус частицы.

С увеличением размеров частиц закон Рэлея перестает соблюдаться и интенсивность рассеянного света становится обратно пропорциональной длине волны в степени меньшей, чем четвертая. Если размер (диаметр) частиц составляет от 1/10 до 1/3 длины световой волны, и показатели преломления частиц и среды не сильно различаются, для описания светорассеяния в системе можно воспользоваться эмпирическим уравнением, предложенным Геллером:

D K n и K " n (10.29)

где K и K " – константы, не зависящие от длины волны.

деформации и соответственно уменьшение плотности упругой энергии. Можно приближенно считать, что подобная релаксация напряжений происходит в области размером порядка l (рис. 8.3), т. е. уменьшение запасенной в теле упругой энергии пропорционально квадрату размера трещины:

E упр

Рис. 8.3. Пластина единичной толщины под воздействием растягивающего

напряжения P .

При механическом диспергировании протекает обратный процесс - рекомбинация частиц, интенсивность которого увеличивается при увеличении степени дисперстности. Максимальный размер частиц,

который можно получить механическим измельчением - 1 10 6 м . Рекомбинацию частиц можно подавить, применяя инертный разбавитель. Так получают коллоидную серу дроблением ромбической серы с добавлением сахара как инертного разбавителя. К образующейся смеси коллоидной серы с сахаром добавляют воду и разделяют смесь с помощью диализа.

www.mitht.ru/e-library

Увеличение поверхностной энергии F пов пропорционально поверхностному натяжению и удвоенной длине трещин, так как трещина имеет два берега.

F пов ~ 2 l (8.8))

Вместе с тем рост трещины сопровождается увеличением поверхностной энергии вследствие образования новой поверхности раздела фаз с площадью, пропорциональной удвоенной длине трещины. Общее изменение энергии при образовании трещин равно сумме изменений упругой и поверхностной энергий:

P2 l 2

Графически зависимость изменения энергии от длины трещины изображается кривой с максимумом (рис. 8.5) .

Рис. 8.5. Зависимость изменения поверхностной энергии от длинны трещины.

Для частиц, размер которых не превышает 20 1 длины волны

падающего света, при условии отсутствия поглощения света и вторичного светорассеяния справедливо уравнение Рэлея.

Для частиц, размер которых равен длине световой волны или больше ее, определение размеров частиц по светорассеянию может быть осуществлено исходя из общей теории светорассеяния.

В случае, когда радиус составляет от одной десятой до одной третьей длины световой волны, и показатели преломления частиц и среды не слишком различаются (m 1,5 ), определение размеров частиц дисперсных систем проводят по методу К. С. Шифрина и И. Я. Слонима. Согласно этому методу, мутность зависит от параметров и z следующим образом:

а при С об 0

[τ ]

где – мутность системы, см-1 ; С об – объемная доля дисперсной фазы; – характеристическая мутность.

При z 2 (т. е. r 0,080 ) можно использовать уравнение Рэлея

(частицы видны в микроскоп).

Зависимость мутности от параметра z описывается уравнением

τ const

C об

www.mitht.ru/e-library

[ τ] lim

C об

С об 0

Весьма удобным объектом исследования оптических свойств коллоидных систем являются латексы, представляющие модель гидрофобных золей. Они являются двухфазными и трехкомпонентными системами, состоящими из полимерных частиц ультрамикроскопических размеров, взвешенных в серуме – водном растворе стабилизатора. В качестве стабилизатора применяют различные поверхностно-активные вещества (соли жирных и сульфокислот).

10.7.2. Дисперсные системы, не подчиняющиеся уравнению Рэлея.

Интенсивность света, рассеянного разбавленной дисперсной системой, а также угловое распределение рассеянного света (индикатрисса рассеяния) зависят от значений двух безразмерных параметров и z . Параметр характеризует отклонение свойств частицы от свойств среды и определяется уравнением

где m

Отношение

показателя

преломления дисперсной

фазы к показателю преломления дисперсионной среды.

Параметр z

характеризует отношение радиуса частицы r к длине

В точке максимума значение первой производной функции равно

0 , т. е.

2 dl

2P 2

Этому максимуму свободной энергии отвечает критический размер трещины, равный:

l кр ~

Трещины с размером, большим критического, неустойчивы и самопроизвольно увеличивают свои размеры, что приводит к образованию макроскопической трещины и разрушению тела. Трещины с размером, меньшим критического, должны стремиться уменьшить свои размеры (залечиваться).

Выражение (8.11) можно также представить в виде:

E 1/ 2

Согласно этому соотношению, полученному впервые Гриффитсом и названному его именем. Реальная прочность P 0 твердого тела,

имеющего трещину с размером l , пропорциональна корню квадратному из величины поверхностной энергии и обратно пропорциональна корню квадратному из длины трещины. «Теоретическая» прочность идеального тела равна

где b – размер молекул. Уравнение Гриффитса может быть также представлено в виде

www.mitht.ru/e-library

Таким образом, отношение реальной и идеальной прочности твердого тела определяется соотношением между размером молекул b и размером дефекта.

Таким образом, анализ взаимосвязи механических свойств и поверхностной энергии показывает, что, изменяя величину поверхностной энергии, можно влиять на прочность материалов. Развитие микротрещин под действием внешних сил может быть облегчено адсорбцией различных веществ на поверхности тела из среды, в которой проводят диспергирование.

Адсорбироваться могут ионы электролитов, молекулы поверхностно-активных веществ, жидкие металлы (например, ртуть). На поверхности образуется двухмерный газ. Адсорбированные ионы или молекулы проникают в щели и стремятся раздвинуть микротрещины. Происходит также экранирование сил сцепления, действующих между поверхностями микротрещин. Адсорбированное понижение прочности получило название эффекта Ребиндера . Вещества, повышающие эффективность диспергирования, называются понизителями твердости. Этот эффект имеет большое практическое значение не только в процессах собственно диспергирования, но и в процессах бурения твердых пород, при тонкой обработке металлов.

Понизители твердости могут быть введены в диспергирующее устройство в виде паров, жидкости. Этот способ широко применяется при получении высокодисперсного цемента.

К эффективным методам относятся механическое дисперигирование, основанное на применении вибрационных методов (воздействие колебаний достаточно высокой частоты и малой

Запишем уравнение в общем виде:

I пр I 0 e k c l

I пр

e k c l

e τ l

Выразим

через оптическую плотность:

I пр

Для дисперсных систем со сферическими частицами уравнение Рэлея можно записать в таком виде:

I расс

24 π3

τ λ 4

С об V

n2 2 n2

где I расс -

полная интенсивность

света, рассеянного 1 см3

системы; С об – объемная доля дисперсной фазы; V– объем частицы, см3 .

Отсюда можно вычислить объем частиц:

где K

2 n2

Уравнение Рэлея справедливо лишь для разбавленных растворов, так как оно не учитывает вторичного рассеяния света и взаимодействия между частицами. Поэтому для определения размера частиц следует найти для ряда растворов с разной кратностью разбавления и экстраполировать величину / C об до С об 0 .

A C p

1 C 1

p s (12.9)

где ps – давление насыщенного пара при данной температуре; давление пара.

p s - относительное

Уравнение изотермы полимолекулярной адсорбции БЭТ легко привести к линейной форме:

A (1

по которому можно построить линейную зависимость в координатах / от и определить константы С и А∞ .

Теория БЭТ, так же как и теория Ленгмюра, указывает путь для определения удельной поверхности адсорбента. Найдя А∞ для паров простых веществ при низких температурах и зная площадь, занимаемую молекулой адсорбтива, легко вычислить удельную поверхность адсорбента.

В качестве адсорбатов используют инертные газы (азот, аргон, криптон и др.), которые характеризуются слабым межмолекулярным взаимодействием на поверхности адсорбента, что находится в соответствии с исходными допущениями теории, а это обеспечивает достоверность получаемых результатов. Для увеличения адсорбции таких газов ее ведут при низких температурах, откуда и частое название метода БЭТ - метод низкотемпературной адсорбции.

13 Адсорбционное понижение прочности. Эффект Ребиндера

Многие технологические процессы начинаются с дробления и измельчения. Это одна из самых массовых и энергоемких операций современной технологии. Размалывают зерно, превращая его в муку, размалывают руду, уголь, горные породы, необходимые для производства цемента, стекла. Размалывают ежегодно миллиарды тонн сырья, затрачивая громадное количество электроэнергии.

Явление адсорбционного влияния среды на механические свойства и структуру твердых тел - эффект Ребиндера - было открыто академиком Петром Александровичем Ребиндером в 1928 году. Сущность этого явления состоит в облегчении деформирования и разрушения твердых тел и самопроизвольном протекании в них структурных изменений в результате понижения их свободной поверхностной энергии при контакте со средой, содержащей вещества, способные к адсорбции на межфазной поверхности. Многие явления, наблюдаемые в природе, технике и научно-исследовательской практике, имеют своей основой эффект Ребиндера.

В зависимости от химической природы твердого тела и среды, условий деформирования и разрушения структуры твердого тела эффект Ребиндера может проявляться в различных формах: адсорбционного пластифицирования (облегчения пластического деформирования), адсорбционного понижения прочности или самопроизвольного диспергирования структуры твердого тела. Несмотря на разнообразие форм проявления, можно выделить ряд общих особенностей, характерных для эффекта Ребиндера:

1) Действие сред весьма специфично: на каждый данный тип твердого тела действуют лишь некоторые определенные среды.

2) Изменение механических свойств твердых тел можно наблюдать сразу после установления контакта со средой.

3) Для проявления действия среды достаточно весьма малых ее количеств.

4) Эффект Ребиндера проявляется лишь при совместном действии среды и механических напряжений.

5) Наблюдается своеобразная обратимость эффекта: после удаления среды механические свойства исходного материала полностью восстанавливаются.

В этих особенностях состоит отличие эффекта Ребиндера от других возможных случаев влияния среды на механические свойства твердых тел, в частности, от процессов растворения и коррозии, когда разрушение тела под действием среды может происходить и в отсутствие механических напряжений. В последнем случае обычно необходимо воздействие значительных количеств агрессивной среды.

Адсорбционное понижение прочности (АПП) наблюдается в присутствии сред, вызывающих сильное снижение поверхностной энергии твердых тел. Наиболее сильные эффекты вызывают жидкие среды, близкие твердому телу по молекулярной природе. Так, для твердых материалов такими средами являются расплавы более легкоплавких металлов; для ионных кристаллов и оксидов - вода, растворы электролитов и солевые расплавы; для молекулярных неполярных кристаллов - углеводороды. Среди многочисленных сред одинаковой молекулярной природы значительное снижение прочности твердых тел часто вызывают вещества, образующие с твердым телом простую эвтектическую диаграмму с небольшой растворимостью в твердом состоянии; этому отвечает малая по величине положительная энергия смешения компонентов. В системах с малой интенсивностью взаимодействия компонентов (взаимной нерастворимостью), также как и в случае очень большого взаимного сродства, особенно если компоненты вступают в химическую реакцию, АПП обычно не наблюдается.

При хрупком разрушении связь прочности Р с поверхностной энергией описывается уравнением Гриффитса:

, (13.1)

где Е - модуль упругости твердого тела, l - характерный размер существующих в нем или возникающих при предварительном пластическом деформировании дефектов - зародышевых трещин разрушения. В соответствии с соотношением Гриффитса, справедливым в условиях хрупкого разрушения, отношение прочностей материала в присутствии P A и в отсутствие среды P 0 равно корню квадратному из отношения соответствующих поверхностных энергий: P A /P 0 =( A / 0 ) 1/2 . При разрушении твердых тел в присутствии смесей двух жидких компонентов, различающихся по адсорбционной активности, прочность снижается тем сильнее, чем выше концентрация более активного компонента, который преимущественно адсорбируется на поверхности разрушения.

Сопоставляя соотношение Гриффитса с адсорбционным уравнением Гиббса (при малых концентрациях) Г=-(RT) -1 d /dlnc можно непосредственно связать адсорбцию с прочностью P :

Эффект Ребиндера позволил снизить расходы энергии 20-30%, а также получить материалы сверхтонкого помола, например, цемент с особыми свойствами. Эффект Ребиндера используется и при механической обработке металла, когда в смазочноохлаждающую жидкость добавляется ПАВ, понижающие прочность в зоне действия резца. Поверхностно-активные вещества широко используются в пищевой промышленности: для

понижения прочности при дроблении зерна, для улучшения качества выпекаемого хлеба, замедления процесса его черствения; для уменьшения клейкости макаронных изделий, для повышения пластических свойств маргарина; в производстве мороженого; в производстве кондитерских изделий и т.д.

Он представляет собой адсорбционное понижение прочности - изменение механических свойств твёрдых тел вследствие физико-химических процессов , вызывающих уменьшение поверхностной (межфазной) энергии тела. В случае кристаллического твёрдого тела, помимо уменьшения поверхностной энергии, для проявления эффекта Ребиндера важно также, чтобы кристалл имел дефекты в структуре, необходимые для зарождения трещин, которые затем под влиянием среды распространяются. У поликристаллических тел такими дефектами являются границы зёрен :350 . Проявляется в снижении прочности и возникновении хрупкости, уменьшении долговечности, облегчении диспергирования. Для проявления эффекта Ребиндера необходимы следующие условия:

  • Контактирование твердого тела с жидкой средой
  • Наличие растягивающих напряжений

Основными характерными чертами, отличающими эффект Ребиндера от других явлений, например, коррозии и растворения , являются следующие :337:

  • быстрое появление - немедленно после контакта тела со средой
  • достаточность мизерного объёма действующего на твёрдое тело вещества, но только с сопутствующим механическим воздействием
  • возвращение тела к начальным характеристикам после удаления среды

Примеры эффекта Ребиндера

Напишите отзыв о статье "Эффект Ребиндера"

Примечания

Литература

  • Гецов Г.Г. Капля долбит камень // Химия и жизнь . - 1972. - № 3 . - С. 14-16 .
  • С.В Грачев, В. Р. Бараз, А. А. Богатов, В. П. Швейкин. «Физическое материаловедение»

Ссылки

  • на YouTube

Отрывок, характеризующий Эффект Ребиндера

– «Первопрестольной столице нашей Москве.
Неприятель вошел с великими силами в пределы России. Он идет разорять любезное наше отечество», – старательно читала Соня своим тоненьким голоском. Граф, закрыв глаза, слушал, порывисто вздыхая в некоторых местах.
Наташа сидела вытянувшись, испытующе и прямо глядя то на отца, то на Пьера.
Пьер чувствовал на себе ее взгляд и старался не оглядываться. Графиня неодобрительно и сердито покачивала головой против каждого торжественного выражения манифеста. Она во всех этих словах видела только то, что опасности, угрожающие ее сыну, еще не скоро прекратятся. Шиншин, сложив рот в насмешливую улыбку, очевидно приготовился насмехаться над тем, что первое представится для насмешки: над чтением Сони, над тем, что скажет граф, даже над самым воззванием, ежели не представится лучше предлога.
Прочтя об опасностях, угрожающих России, о надеждах, возлагаемых государем на Москву, и в особенности на знаменитое дворянство, Соня с дрожанием голоса, происходившим преимущественно от внимания, с которым ее слушали, прочла последние слова: «Мы не умедлим сами стать посреди народа своего в сей столице и в других государства нашего местах для совещания и руководствования всеми нашими ополчениями, как ныне преграждающими пути врагу, так и вновь устроенными на поражение оного, везде, где только появится. Да обратится погибель, в которую он мнит низринуть нас, на главу его, и освобожденная от рабства Европа да возвеличит имя России!»
– Вот это так! – вскрикнул граф, открывая мокрые глаза и несколько раз прерываясь от сопенья, как будто к носу ему подносили склянку с крепкой уксусной солью. – Только скажи государь, мы всем пожертвуем и ничего не пожалеем.
Шиншин еще не успел сказать приготовленную им шутку на патриотизм графа, как Наташа вскочила с своего места и подбежала к отцу.
– Что за прелесть, этот папа! – проговорила она, целуя его, и она опять взглянула на Пьера с тем бессознательным кокетством, которое вернулось к ней вместе с ее оживлением.
– Вот так патриотка! – сказал Шиншин.
– Совсем не патриотка, а просто… – обиженно отвечала Наташа. – Вам все смешно, а это совсем не шутка…
– Какие шутки! – повторил граф. – Только скажи он слово, мы все пойдем… Мы не немцы какие нибудь…
– А заметили вы, – сказал Пьер, – что сказало: «для совещания».
– Ну уж там для чего бы ни было…
В это время Петя, на которого никто не обращал внимания, подошел к отцу и, весь красный, ломающимся, то грубым, то тонким голосом, сказал:
– Ну теперь, папенька, я решительно скажу – и маменька тоже, как хотите, – я решительно скажу, что вы пустите меня в военную службу, потому что я не могу… вот и всё…
Графиня с ужасом подняла глаза к небу, всплеснула руками и сердито обратилась к мужу.
– Вот и договорился! – сказала она.
Но граф в ту же минуту оправился от волнения.
– Ну, ну, – сказал он. – Вот воин еще! Глупости то оставь: учиться надо.
– Это не глупости, папенька. Оболенский Федя моложе меня и тоже идет, а главное, все равно я не могу ничему учиться теперь, когда… – Петя остановился, покраснел до поту и проговорил таки: – когда отечество в опасности.
– Полно, полно, глупости…
– Да ведь вы сами сказали, что всем пожертвуем.
– Петя, я тебе говорю, замолчи, – крикнул граф, оглядываясь на жену, которая, побледнев, смотрела остановившимися глазами на меньшого сына.
– А я вам говорю. Вот и Петр Кириллович скажет…
– Я тебе говорю – вздор, еще молоко не обсохло, а в военную службу хочет! Ну, ну, я тебе говорю, – и граф, взяв с собой бумаги, вероятно, чтобы еще раз прочесть в кабинете перед отдыхом, пошел из комнаты.
– Петр Кириллович, что ж, пойдем покурить…
Пьер находился в смущении и нерешительности. Непривычно блестящие и оживленные глаза Наташи беспрестанно, больше чем ласково обращавшиеся на него, привели его в это состояние.
– Нет, я, кажется, домой поеду…
– Как домой, да вы вечер у нас хотели… И то редко стали бывать. А эта моя… – сказал добродушно граф, указывая на Наташу, – только при вас и весела…
– Да, я забыл… Мне непременно надо домой… Дела… – поспешно сказал Пьер.
– Ну так до свидания, – сказал граф, совсем уходя из комнаты.
– Отчего вы уезжаете? Отчего вы расстроены? Отчего?.. – спросила Пьера Наташа, вызывающе глядя ему в глаза.

Ребиндера эффект

эффект адсорбционного понижения прочности твёрдых тел, облегчение деформации и разрушения твёрдых тел вследствие обратимого физико-химического воздействия среды. Открыт П. А. Ребиндер ом (1928) при изучении механических свойств кристаллов кальцита и каменной соли. Возможен при контакте твёрдого тела, находящегося в напряжённом состоянии, с жидкой (или газовой) адсорбционно-активной средой. Р, э. весьма универсален - наблюдается в твёрдых металлах, ионных, ковалентных и молекулярных моно- и поликристаллических телах, стеклах и полимерах, частично закристаллизованных и аморфных, пористых и сплошных. Основное условие проявления Р. э. - родственный характер контактирующих фаз (твёрдого тела и среды) по химическому составу и строению. Форма и степень проявления Р. э. зависят от интенсивности межатомных (межмолекулярных) взаимодействий соприкасающихся фаз, величины и типа напряжений (необходимы растягивающие напряжения), скорости деформации, температуры. Существенную роль играет реальная структура тела - наличие дислокаций, трещин, посторонних включений и др. Характерная форма проявления Р. э. - многократное падение прочности, повышение хрупкости твёрдого тела, снижение его долговечности. Так, смоченная ртутью цинковая пластина под нагрузкой не гнётся, а хрупко разрушается. Другая форма проявления Р. э. - пластифицирующее действие среды на твёрдые материалы, например воды на гипс, органических поверхностно-активных веществ (См. Поверхностно-активные вещества) на металлы и др. Термодинамический Р. э. обусловлен уменьшением работы образования новой поверхности при деформации в результате понижения свободной поверхностной энергии (См. Поверхностная энергия) твёрдого тела под влиянием окружающей среды. Молекулярная природа Р. э. состоит в облегчении разрыва и перестройки межмолекулярных (межатомных, ионных) связей в твёрдом теле в присутствии адсорбционно-активных и вместе с тем достаточно подвижных инородных молекул (атомов, ионов). Важнейшие области технического приложения Р. э. - облегчение и улучшение механической обработки различных (особенно высокотвёрдых и труднообрабатываемых) материалов, регулирование процессов трения и износа с применением смазок (см. Смазочное действие), эффективное получение измельченных (порошкообразных) материалов, получение твёрдых тел и материалов с заданной дисперсной структурой (См. Дисперсная структура) и требуемым сочетанием механических и др. свойств путём дезагригирования и последующего уплотнения без внутренних напряжений (см. также Физико-химическая механика). Адсорбционно-активная среда может наносить и существенный вред, например, снижая прочность и долговечность деталей машин и материалов в условиях эксплуатации. Устранение факторов, способствующих проявлению Р. э., в этих случаях позволяет защищать материалы от нежелательного воздействия среды.

Лит.: Горюнов Ю. В., Перцов Н. В., Сумм Б. Д., Эффект Ребиндера, М., 1966; Ребиндер П. А., Щукин Е. Д., Поверхностные явления в твердых телах в процессах их деформации и разрушения, «Успехи физических наук», 1972, т. 108, в. 1, с. 3.

Л. А. Шиц.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Ребиндера эффект" в других словарях:

    Понижение прочности твердых тел в адсорбционно активных средах (растворах поверхностно активного вещества, электролитах, расплавах солей и др.). Открыт П. А. Ребиндером в 1928. Используется для повышения эффективности диспергирования, помола,… … Большой Энциклопедический словарь

    - (адсорбционное понижение прочности) уменьшение поверхностной (межфазной) энергии вследствие физ. или хим. процессов на поверхности твёрдых тел, приводящее к изменению его меха нич. свойств (снижению прочности, возникновению хрупкости, уменьшению… … Физическая энциклопедия

    Понижение прочности твердых тел в адсорбционно активных средах (растворах ПАВ, электролитах, расплавах солей и др.). Открыт П. А. Ребиндером в 1928. Используется для повышения эффективности диспергирования, помола, обработки материалов резанием и … Энциклопедический словарь

    Эффект Ребиндера (адсорбционное понижение прочности), изменение механических свойств твёрдых тел вследствие физико химических процессов, вызывающих уменьшение поверхностной (межфазной) энергии тела. Проявляется в снижении прочности и… … Википедия

    См. Физико химическая механика … Химическая энциклопедия

    Понижение прочности тв. тел в адсорбционно активных средах (р рах ПАВ, электролитах, расплавах солей и др.). Открыт П. А. Ребиндером в 1928. Используется для повышения эффективности диспергирования, помола, обработки материалов резанием и… … Естествознание. Энциклопедический словарь

    эффект Холла - возникновение поперечного электрического поля и разности потенциалов в металле или полупроводнике, по которому проходит электрический ток, при помещении его в магнитное поле, перпендикулярно к направлению тока. Открыт американским… …

    эффект Мессбауэра - резонансное поглощение γ квантов атомными ядрами, наблюдаемое, когда источник и поглотитель γ излучения твердое тело, а энергия квантов невелика (150 кэВ). Иногда эффект М. называют резонанс, поглощением без отдачи или ядерным … Энциклопедический словарь по металлургии

    эффект Зеебека - явление возникновения электродвижущей силы в электрическом контуре, состоящем из разных проводников, контакты между которыми имеют разные температуры; открыт в 1821 г. немецким физиком Т. Зеебеком. Электродвижущая сила,… … Энциклопедический словарь по металлургии

    эффект Баушингера - уменьшение сопротивления металла или сплава малым пластическим деформациям (например, при сжатии) после предварительной деформации противоположного знака (при растяжении). У монокристаллов чистых металлов эффект Баушингера… … Энциклопедический словарь по металлургии

Книги

  • Роль поверхностных явлений в структурно-механическом поведении твердых полимеров , А. Л. Волынский, Н. Ф. Бакеев. В книге изложены современные представления о роли поверхностных явлений в структурно-механическом поведении аморфных и кристаллических полимеров. Рассмотрены процессы развития и залечивания…

Явления смачиваемости рассматривались для равновесного состояния системы. В пластовых условиях наблюдаются неустойчивые процессы, происходящие на поверхности раздела фаз. За счет вытеснения нефти водой образуется передвигающийся трехфазный периметр смачивания. Угол смачивания изменяется в зависимости от скорости и направления движения жидкости (менисков жидкости, рис. 5.5) в каналах и трещинах.

Рисунок 5.5 – Схема изменения углов смачивания при изменении направления движения мениска в капиллярном канале:  1 – наступающий,  2 – отступающий углы смачивания при движении водо-нефтяного мениска в цилиндрическом канале с гидрофильной поверхностью ( – статический угол смачивания)

Кинетическим гистерезисом смачивания принято называть изменение угла смачивания при передвижении по твердой поверхности трехфазного периметра смачивания. Величина гистерезиса зависит:

    от направления движения периметра смачивания, т.е. от того, происходит ли вытеснение с твердой поверхности воды нефтью или нефти водой;

    скорости перемещения трехфазной границы раздела фаз по твердой поверхности;

    шероховатости твердой поверхности;

    адсорбции на поверхности веществ.

Явления гистерезиса возникают, в основном, на шероховатых поверхностях и имеют молекулярную природу. На полированных поверхностях гистерезис проявляется слабо.

5.6 Свойства поверхностных слоев пластовых жидкостей

О структуре поверхностного слоя существуют различные пред­положения.

Многие исследователи, изучающие строение и толщину тонких слоев жидкости, связывают образование пристенных слоев с поляри­зацией молекул и их ориентацией от поверхности твердого тела во внутренние области жидкости с образованием сольватных 1 слоев.

Особо сложное строение имеют слои нефти, контактирующие с горными породами пласта, так как взаимодействие поверхностн-активных веществ с минералами очень многообразно.

Замечено, например, что реагенты, применяемые во флотацион­ной технике, могут закрепляться на поверхности минерала как в форме обычных трехмерных пленок, образующих самостоятельную фазу на поверхности минеральных частиц, так и в виде поверхно­стных соединений, нe имеющих определенного состава и не образу­ющих отдельной самостоятельной фазы.

Наконец, реагенты могут концентрироваться в диффузионной части двойного электрического слоя, a не на самой поверхности раздела фаз.

Поверхностно-активные компоненты, по-видимому, всегда кон­центрируются не только на поверхности, но и в трехмерном объеме вблизи поверхности раздела.

Многими исследователями были сделаны попытки измерять тол­щину пленки различных жидкостей па твердых телах. Так, напри­мер, по результатам измерений Б. В. Дерягина и М. М. Кусакова толщина смачивающих пленок водных растворов солей на различ­ных твердых плоских поверхностях составляет около 10 -5 см (100 им). Эти слои отличаются от остальной части жидкости структурой и механическими свойствами – упругостью на сдвиг и повышенной вязкостью. Установлено, что свойства жидкости в поверхностном слое изменяются также вследствие ее сжатия. Например, плотность адсорбированной силикагелем воды по некоторым измерениям соста­вляет 1027-1285 кг/м 3 .

Особыми свойствами обладают также адсорбционные и связан­ные с ними сольватные оболочки на разделах фаз в нефтяном пласте. Некоторые составные части нефти могут образовывать гелеобразные структурированные адсорбционные слои (с необычными - аномаль­ными свойствами) с высокой структурной вязкостью, а при высоких степенях насыщения адсорбционного слоя - с упругостью и меха­нической прочностью на сдвиг.

Исследования показывают, что в состав поверхностных слоев на разделе нефть - вода входят нафтеновые кислоты, низкомолеку­лярные смолы, коллоидные частицы высокомолекулярных смол и асфальтенов, микрокристаллы парафина, а также частицы минераль­ных и углеродистых суспензий. Предполагается, что поверхностный слой на разделе нефть - вода образуется в результате скопления минеральных и углеродистых частиц, а также микрокристаллов парафина под влиянием избирательного смачивания водной фазой гидрофильных участков их поверхности. Адсорбирующиеся на этой же поверхности раздела асфальтосмолистые вещества, переходящие в гелеобразное состояние, цементируют частицы парафина и мине­ралов в единый монолитный слой. Поверхностный слой еще более утолщается вследствие сольватизации гелей асфальтосмолистых веществ со стороны нефтяной фазы.

Особые структурно-механические свойства поверхностных слоев обусловливают стабилизацию различных систем и, в частности, высокую устойчивость некоторых водонефтяных эмульсий.

Существование адсорбционных слоев на разделе остаточная вода - нефть, по видимому, оказывает также некоторое задержива­ющее влияние на процессы смешиваемости нагнетаемых в пласт вод с остаточными.

5.7 Расклинивающее действие тонких слоев жидкости.

Опыты Дерягина. Эффект Ребиндера

Жидкость, смачивающая твердое тело, проникая в тонкие тре­щины, способна играть роль клина и раздвигать ее стенки, т.е. тонкие слои жидкости обладают расклинивающим действием 2 . Это свойство тонких слоев проявляется также при сближении твердых поверхно­стей, погруженных в жидкость. По исследованиям Б. В. Дерягина рас­клинивающее действие возникает при условии, если толщина слоя h жидкости, раздвигающей поверхности трещины, меньше некоторой величины h кр . При h > h кр расклинивающее действие равно нулю и при h < h кр оно возрастает с уменьшением толщины жидкого слоя, т. е. с момента h h кр для сближения поверхностей частиц необходимо приложить к ним внешнюю нагрузку.

Факторами, создающими расклинивающее действие, являются силы ионно-электростатического происхождения и особое агре­гатное состояние полярных жидкостей вблизи граничных поверх­ностей.

Ранее упоминалось, что свойства сольватного слоя на поверх­ности твердого тела резко отличаются от свойств остальной части жидкости. Этот (сольватный) слой можно рассматривать как особую граничную фазу. Поэтому при сближении частиц до расстояний, меньших двойной толщины сольватных слоев, к частицам необхо­димо прикладывать внешнюю нагрузку.

Расклинивающее давление ионно-электростатического происхо­ждения возникает из-за изменений концентрации ионов в слое, разде­ляющем частицы и в окружающем их растворе.

По результатам опыта расклинивающее действие тем больше, чем прочнее связь между жидкостью и поверхностями твердого тела. Его можно усилить, если ввести в жидкость поверхностно-активные вещества, хорошо адсорбируемые поверхностью твердого тела. На этом явлении основан эффект Ребиндера. Сущность его заключается в том, что небольшие количества поверхностно-актив­ных веществ вызывают резкое ухудшение механических свойств твердого тела. Адсорбционное понижение прочности твердых тел зависит от многих факторов. Оно усиливается, если тело подвер­гается растягивающим усилиям и если жидкость хорошо смачивает поверхность.

Эффект адсорбционного понижения прочности используется в бурении скважин. При использовании в качестве промывочных жидкостей растворов, содержащих специально подобранные поверх­ностно-активные вещества, заметно облегчается бурение твердых пород.



mob_info